The thermoelectric transport properties of elemental tellurium are investigated by density functional theory combined with the Boltzmann transport equation in the rigid band approximation. We find that the thermoelectric transport properties parallel and perpendicular to the helical chains are highly asymmetric (almost symmetric) for p-(n-) type doped tellurium due to the anisotropic (isotropic) hole (electron) pockets of the Fermi surface. The electronic band structure shows that the lone-pair derived uppermost heavy-hole and extremely light-hole lower valence bands offer the opportunity to obtain both a high Seebeck coefficient and electrical conductivity along the chains through Sb or Bi doping. Furthermore, the stairlike density of states yields a large asymmetry for the transport distribution function relative to the Fermi energy which leads to large thermopower. The calculations reveal that tellurium has the potential to be a good p-type thermoelectric material with an optimum figure of merit zT of 0.31 (0.56) at room temperature (500 K) at a hole concentration around 1 × 10 19 cm −3 . Exploiting the rich chemistry of lone pairs in chiral solids may have important implications for the discovery of high-zT polychalcogenide-based thermoelectric materials.
Simultaneously optimizing electrical and thermal transport properties of bulk thermoelectric materials remains a key challenge due to the conflicting combination of material traits. Here, we have explored the electrical and thermal transport features of In-filled CoSb3 through X-ray absorption fine structure, X-ray photoemission spectra, transport measurement and theoretical calculation. The results provide evidence of three types of coexisting multi-localization transport behaviours in the material; these are heat-carrying phonon-localized resonant scattering, accelerated electron movement and increase in density of states near the Fermi level. The 5p-orbital hybridization between In and Sb is discovered in the In-filled CoSb3 compound, which results in a charge transfer from Sb to In and the enhancement of p–d orbital hybridization between Co and Sb. Our work demonstrates that the electrical and thermal properties of filled skutterudite bulk thermoelectric materials can be simultaneously optimized through the three types of coexisting multi-localization transport behaviours in an independent way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.