Background: Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disease with unknown pathogenesis. However, the treatment of Diane-35 combined with metformin can improve the endocrine and ovulation of PCOS. In this study, we investigated the effects of Diane-35 combined with metformin (DM) treatment on ovulation and glucose metabolism in a PCOS rat model. Methods: Sprague Dawley rats were divided into 3 groups, control group, model group (PCOS group) and Diane-35 combined with metformin (PCOS + DM group). The mRNA expression levels were determined by qRT-PCR. The hormone levels were determined by enzyme-linked immunosorbent assay. Immunostaining detected the protein levels of lactate dehydrogenase A (LDH-A), pyruvate kinase isozyme M2 (PKM2) and sirtuin 1 (SIRT1) in the ovarian tissues. TNUEL assay was performed to determine cell apoptosis in the PCOS rats. The metabolites in the ovarian tissues were analyzed by liquid chromatography with tandem mass spectrometry. Results: PCOS rats showed an increased in body weight, levels of luteinizing hormone and testosterone and insulin resistance, which was significantly attenuated by the DM treatment. The DM treatment improved disrupted estrous cycle and increased the granulosa cells of the ovary in the PCOS rats. The decreased proliferation and increased cell apoptosis of granulosa cells in the ovarian tissues of PCOS rats were significantly reversed by the DM treatment. The analysis of metabolics revealed that ATP and lactate levels were significantly decreased in PCOS rats, which was recovered by the DM treatment. Furthermore, the expression of LDH-A, PKM2 and SIRT1 was significantly downregulated in ovarian tissues of the PCOS rats; while the DM treatment significantly increased the expression of LDH-A, PKM2 and SIRT1 in the ovarian tissues of the PCOS rats.
The objective of this study was to investigate the protective effects of Lycium barbarum polysaccharides (LBP) on testicular spermatogenic function in streptozotocin (STZ)-induced diabetic rats. Compared to the control group, blood glucose levels were significantly increased and the insulin resistance was markedly aggravated in STZ-induced diabetic rats. Further, the weight of testis and epididymis and the sperm number and motility were decreased in diabetic rats. Pathological changes were also observed in the spermatogenic tubules, along with a decreased number of spermatogenic cells, downregulated proliferating cell nuclear antigen (PCNA) expression, and increased cell apoptosis in the testes. Compared to the saline-treated diabetic rat group, metformin and LBP treatment significantly decreased the level of blood glucose and improved insulin resistance and testicular function. After treatment with metformin and LBP, the pathological changes in the spermatogenic tubules improved significantly, with an increase in the number of spermatogenic cells, upregulation of PCNA, and suppression of apoptosis in the testes. The expressions of sirtuin 1 (SIRT1) and hypoxia-inducible factor 1-alpha (HIF-1α) in diabetic testes were also upregulated by metformin or LBP treatment. In summary, LBP exerted protective effects by increasing cell proliferation, inhibiting cell apoptosis, and regulating SIRT1/HIF-1α expression in the testes of diabetic rats.
Objective
Polycystic ovary syndrome (PCOS) is characterized by follicular dysplasia. An insufficient glycolysis-derived energy supply of granulosa cells (GCs) is an important cause of follicular dysplasia in PCOS. Follicular fluid (FF) exosomal microRNAs (miRNAs) have been proven to regulate the function of GCs. In this study, exosomes extracted from clinical FF samples were used for transcriptome sequencing (RNA-seq) analysis, and a human ovarian granulocyte tumour cell line (KGN cells) was used for in vitro mechanistic studies.
Methods and results
In FF exosomal RNA-seq analysis, a decrease in glycolysis-related pathways was identified as an important feature of the PCOS group, and the differentially expressed miR-143-3p and miR-155-5p may be regulatory factors of glycolysis. By determining the effects of miR-143-3p and miR-155-5p on hexokinase (HK) 2, pyruvate kinase muscle isozyme M2 (PKM2), lactate dehydrogenase A (LDHA), pyruvate, lactate and apoptosis in KGN cells, we found that upregulated miR-143-3p expression in exosomes from the PCOS group inhibited glycolysis in KGN cells; knockdown of miR-143-3p significantly alleviated the decrease in glycolysis in KGN cells in PCOS. MiR-155-5p silencing attenuated glycolytic activation in KGN cells; overexpression of miR-155-5p significantly promoted glycolysis in KGN cells in PCOS. In this study, HK2 was found to be the mediator of miR-143-3p and miR-155-5p in FF-derived exosome-mediated regulation of glycolysis in KGN cells. Reduced glycolysis accelerated apoptosis of KGN cells, which mediated follicular dysplasia through ATP, lactate and apoptotic pathways.
Conclusions
In conclusion, these results indicate that miR-143-3p and miR-155-5p in FF-derived exosomes antagonistically regulate glycolytic-mediated follicular dysplasia of GCs in PCOS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.