Background: Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disease with unknown pathogenesis. However, the treatment of Diane-35 combined with metformin can improve the endocrine and ovulation of PCOS. In this study, we investigated the effects of Diane-35 combined with metformin (DM) treatment on ovulation and glucose metabolism in a PCOS rat model. Methods: Sprague Dawley rats were divided into 3 groups, control group, model group (PCOS group) and Diane-35 combined with metformin (PCOS + DM group). The mRNA expression levels were determined by qRT-PCR. The hormone levels were determined by enzyme-linked immunosorbent assay. Immunostaining detected the protein levels of lactate dehydrogenase A (LDH-A), pyruvate kinase isozyme M2 (PKM2) and sirtuin 1 (SIRT1) in the ovarian tissues. TNUEL assay was performed to determine cell apoptosis in the PCOS rats. The metabolites in the ovarian tissues were analyzed by liquid chromatography with tandem mass spectrometry. Results: PCOS rats showed an increased in body weight, levels of luteinizing hormone and testosterone and insulin resistance, which was significantly attenuated by the DM treatment. The DM treatment improved disrupted estrous cycle and increased the granulosa cells of the ovary in the PCOS rats. The decreased proliferation and increased cell apoptosis of granulosa cells in the ovarian tissues of PCOS rats were significantly reversed by the DM treatment. The analysis of metabolics revealed that ATP and lactate levels were significantly decreased in PCOS rats, which was recovered by the DM treatment. Furthermore, the expression of LDH-A, PKM2 and SIRT1 was significantly downregulated in ovarian tissues of the PCOS rats; while the DM treatment significantly increased the expression of LDH-A, PKM2 and SIRT1 in the ovarian tissues of the PCOS rats.
The objective of this study was to investigate the protective effects of Lycium barbarum polysaccharides (LBP) on testicular spermatogenic function in streptozotocin (STZ)-induced diabetic rats. Compared to the control group, blood glucose levels were significantly increased and the insulin resistance was markedly aggravated in STZ-induced diabetic rats. Further, the weight of testis and epididymis and the sperm number and motility were decreased in diabetic rats. Pathological changes were also observed in the spermatogenic tubules, along with a decreased number of spermatogenic cells, downregulated proliferating cell nuclear antigen (PCNA) expression, and increased cell apoptosis in the testes. Compared to the saline-treated diabetic rat group, metformin and LBP treatment significantly decreased the level of blood glucose and improved insulin resistance and testicular function. After treatment with metformin and LBP, the pathological changes in the spermatogenic tubules improved significantly, with an increase in the number of spermatogenic cells, upregulation of PCNA, and suppression of apoptosis in the testes. The expressions of sirtuin 1 (SIRT1) and hypoxia-inducible factor 1-alpha (HIF-1α) in diabetic testes were also upregulated by metformin or LBP treatment. In summary, LBP exerted protective effects by increasing cell proliferation, inhibiting cell apoptosis, and regulating SIRT1/HIF-1α expression in the testes of diabetic rats.
Dendrobium nobile Lindl polysaccharides (DNLP) exhibited various biological functions. This study aimed to investigate the protective effects of DNLP on testicular spermatogenic function in streptozotocin (STZ)‐induced diabetic rats in comparison with metformin. The blood glucose level was significantly increased and the homeostatic model assessment for insulin resistance (HOMA‐IR) aggravated markedly in diabetic rats. The weight of testis and epididymis, and the sperm number and motility were decreased in the diabetic rats. The pathologic changes occurred in the spermatogenic tubules along with the decreased number of spermatogenic cells, downregulated proliferating cell nuclear antigen (PCNA) and Sirtuin 1 (SIRT1) expression and increased cell apoptosis in the testes. Compared with the model group, DNLP and metformin treatment significantly decreased the level of blood glucose, improved the HOMA‐IR, and increased the weight of testis and epididymis, as well as the sperm number and sperm motility. Furthermore, the pathologic changes in the spermatogenic tubules improved significantly with increased number of spermatogenic cells, the upregulation of PCNA and SIRT1 and suppression of cell apoptosis in the testes. Collectively, our study for the first time examined the effects of DNLP on the male reproductive system of STZ‐induced diabetic rats, and indicated that DNLP was protective against diabetes mellitus‐induced testis injury via increasing the proliferation, inhibiting cell apoptosis and upregulating SIRT1 expression in testicular spermatogenic cells.
in most cases, exogenous oestradiol benzoate (eB) inhibits spermatogenesis, however, the mechanism underlying this process has not been fully elucidated. The present study investigated the effect of eB on redox equilibrium and glycometabolism in mouse testes. Male Kunming mice were divided into 3 groups and injected with 0, 5 and 10 mg/kg eB, respectively. Histological analysis revealed no sperm and far fewer spermatogenic cells in the testes of eB-treated mice. additionally, transmission electron microscopy revealed that mitochondria in Sertoli cells were transformed to vacuoles with irregular cristae in the eB-treated group. eB also significantly decreased the activities and mRNA expression of catalase, superoxide dismutase, and glutathione peroxidase and increased the activity of nitric oxide synthase and nitric oxide concentration in the testes compared with the control. These results indicated that oxidative damage was caused by eB treatment. With regard to glycometabolism, aTP content and activities of hexokinase and pyruvate kinase were significantly reduced in the eB-treated group. although glucose and pyruvate concentrations were significantly increased by eB treatment, levels of lactate, the main energy source of spermatogenic cells, were unchanged. Monocarboxylate transporter 2 (McT2) and McT4, which are responsible for lactate transportation, were downregulated by eB. in conclusion, the results of the present study indicated that azoospermia induced by eB in male mice was associated with oxidative damage and the disorder of testicular metabolic cooperation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.