Predicting the concentrated solution behavior for monoclonal antibodies requires developing and using minimal models to describe their shape and interaction potential. Toward this end, the small-angle X-ray scattering (SAXS) profiles for a monoclonal antibody (COE-03) have been measured under solution conditions chosen to produce weak self-association. The experiments are complemented with molecular simulations of a three-bead antibody model with and without interbead attraction. The scattering profile is extracted directly from the molecular simulation to avoid using the decoupling approximation. We examine the ability of the three-bead model to capture features of the scattering profile and the dependence of compressibilty on protein concentration. The three-bead model is able to reproduce generic features of the experimental structure factor as a function of wave vector S(k) including a well-defined shoulder, which is a consequence of the planar structure of the antibody, and a well-defined minimum in S(k) at k ∼ 0.025 Å. We also show the decoupling approximation is incapable of accounting for highly anisotropic shapes. The best-fit parameters obtained from matching spherical models to simulated scattering profiles are protein concentration dependent, which limits their applicability for predicting thermodynamic properties. Nevertheless, the experimental compressibility curves can be accurately reproduced by an appropriate parametrization of the Baxter adhesive model, indicating the model provides a semiempirical equation of state for the antibody. The results provide insights into how equations of state can be improved for antibodies by accounting for their anisotropic shapes.
Terahertz time-domain spectroscopy (THz-TDS) has been shown to detect overlapping extended hydration layers around proteins. Here, we used THz-TDS to detect modulation of the extended hydration layer around monoclonal antibodies (mAbs) by the introduction of commonly used excipients. Proline and sucrose altered the hydration layer around a mAb (mAb1), which was observed as a negative shift in the plateau in absorbance above ~100 mg/mL mAb1 (~70,000 water molecules per mAb); arginine had no effect. At lower concentrations of ~10 mg/mL mAb1 (~700,000 water molecules per mAb) proline and arginine modulated the hydration layer, which was observed as a negative shift in the relative absorbance, whereas sucrose had no effect. The changes in the extended hydration layer were not translated to shifts in the thermal stability or protein:protein interaction parameter. The hydration layer of a second mAb (mAb2) was further shown to be modulated by more complex formulations composed of two or more excipients; although the differences in terahertz absorbance were not predictive of viscosity or long-term stability. THz-TDS promises to be a useful tool for understanding a protein's interaction with excipients in solution and the challenge will be to determine how to apply this knowledge to protein formulation.
First formulation and characterization of a non-toxic bicontinuous microemulsion gelled by a molecular gelator as potential transdermal drug delivery system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.