The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has had and continues to have a significant impact on global public health. One of the characteristics of SARS-CoV-2 is a surface homotrimeric spike protein, which is primarily responsible for the host immune response upon infection. Here we present the preclinical studies of a broadly protective SARS-CoV-2 subunit vaccine developed from our trimer domain platform using the Delta spike protein, from antigen design through purification, vaccine evaluation and manufacturability. The pre-fusion trimerized Delta spike protein, PF-D-Trimer, was highly expressed in Chinese hamster ovary (CHO) cells, purified by a rapid one-step anti-Trimer Domain monoclonal antibody immunoaffinity process and prepared as a vaccine formulation with an adjuvant. Immunogenicity studies have shown that this vaccine candidate induces robust immune responses in mouse, rat and Syrian hamster models. It also protects K18-hACE2 transgenic mice in a homologous viral challenge. Neutralizing antibodies induced by this vaccine show cross-reactivity against the ancestral WA1, Delta and several Omicrons, including BA.5.2. The formulated PF-D Trimer is stable for up to six months without refrigeration. The Trimer Domain platform was proven to be a key technology in the rapid production of PF-D-Trimer vaccine and may be crucial to accelerate the development and accessibility of updated versions of SARS-CoV-2 vaccines.
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has had and still has a considerable impact on global public health. One of the characteristics of SARS-CoV-2 is a surface homotrimeric spike protein, the primary responsible for the host immune response upon infection. Here we show the preclinical studies of a broad protective SARS-CoV-2 subunit vaccine developed from our Trimer Domain platform using the Delta spike protein, from antigen design to purification, vaccine evaluation and manufacturability. The prefusion trimerized Delta spike protein, PF-D-Trimer, was highly expressed in Chinese hamster ovary (CHO) cells, purified by a rapid one-step anti-Trimer Domain monoclonal antibody immunoaffinity process and prepared as a vaccine formulation with an adjuvant. The immunogenicity studies demonstrated that this vaccine candidate induces robust immune responses in mouse, rat and Syrian hamster models. It also protects K18-hACE2 transgenic mice in a homologous virus challenge. The neutralizing antibodies induced by this vaccine display a cross-reactive capacity against the ancestral WA1 and Delta variants as well as different Omicron, including BA.5.2. The Trimer Domain platform was proven to be a key technology in the rapid production of the PF-D-Trimer vaccine and may be crucial to accelerate the development of updated versions of SARS-CoV-2 vaccines.
A novel uncapped mRNA platform was developed. Five lipid nanoparticle (LNP)-encapsulated mRNA constructs were made to evaluate several aspects of our platform, including transfection efficiency and durability in vitro and in vivo and activation of humoral and cellular immunity in several animal models. The constructs were eGFP-mRNA-LNP (for enhanced green fluorescence mRNA), Fluc-mRNA-LNP (for firefly luciferase mRNA), SδT-mRNA-LNP (for Delta strain SARS-CoV-2 spike protein trimer mRNA), gDED-mRNA-LNP (for truncated glycoprotein D mRNA coding ectodomain from herpes simplex virus type 2 (HSV2)) and gDFR-mRNA-LNP (for truncated HSV2 glycoprotein D mRNA coding amino acids 1~400). Quantified target protein expression in vitro and in vivo was achieved with eGFP- and Fluc-mRNA-LNP. SδT-mRNA-LNP, gDED-mRNA-LNP and gDFR-mRNA-LNP induced both humoral and cellular immune responses comparable to capped mRNA-LNP constructs reported previously. Notably, 25, 50 and 100 μg of SδT-mRNA-LNP elicited neutralizing antibodies in hamsters against the Omicron and Delta strains. Additionally, gDED-mRNA-LNP and gDFR-mRNA-LNP induced potent neutralizing antibodies in rabbits and mice. The mRNA constructs with uridine triphosphate (UTP) outperformed those with N1-methylpseudouridine triphosphate (N1mψTP) in the in vivo expression of luciferase and induction of antibodies via SδT-mRNA-LNP. Our uncapped, process-simplified, and economical mRNA platform may have broad uses in vaccines and protein replacement drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.