This paper introduces a novel method based on the elasticity analysis of the finger skin to discriminate fake fingers from real ones. We match the fingerprints before and after special distortion and gained their corresponding minutiae pairs as landmarks. The thin-plate spline (TPS) model is used to globally describe the finger distortion. For an input finger, we compute the bending energy vector by the TPS model and calculate the similarity of the bending energy vector to the bending energy fuzzy feature set. The similarity score is in the range [0, 1], indicating how much the current finger is similar to the real finger. The method realizes fake finger detection based on the normal steps of fingerprint processing without special hardware, so it is easily implemented and efficient. The experimental results on a database of real and fake fingers show that the performance of the method is available.
Abstract. Fuzzy vault is a practical and promising fingerprint template protection technology. However, this scheme has some security issues, in which cross-matching between different vaults may be the most serious one. In this paper, we develop an improvement version of fuzzy vault integrating minutiae's local ridge orientation information. The improved fuzzy fingerprint vault, a two factor authentication scheme to some extent, can effectively prevent cross-matching between different fingerprint vaults. Experimental results show that, if and only if the fingerprint and the password of users are simultaneity obtained by the attacker, the fuzzy vault can be cracked. Results under three scenarios indicate that, although the authentication performance of Scena.1 decreases a little in term of GAR, the security of Scena.2 and Scena.3, hence the security of the whole scheme, is enhanced greatly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.