Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Atomically thin molybdenum disulfide (MoS), a direct-band-gap semiconductor, is promising for applications in electronics and optoelectronics, but the scalable synthesis of highly crystalline film remains challenging. Here we report the successful epitaxial growth of a continuous, uniform, highly crystalline monolayer MoS film on hexagonal boron nitride (h-BN) by molecular beam epitaxy. Atomic force microscopy and electron microscopy studies reveal that MoS grown on h-BN primarily consists of two types of nucleation grains (0° aligned and 60° antialigned domains). By adopting a high growth temperature and ultralow precursor flux, the formation of 60° antialigned grains is largely suppressed. The resulting perfectly aligned grains merge seamlessly into a highly crystalline film. Large-scale monolayer MoS film can be grown on a 2 in. h-BN/sapphire wafer, for which surface morphology and Raman mapping confirm good spatial uniformity. Our study represents a significant step in the scalable synthesis of highly crystalline MoS films on atomically flat surfaces and paves the way to large-scale applications.
Ultrathin ferroelectrics hold great promise for modern miniaturized sensors, memories, and optoelectronic devices. However, in most ferroelectric materials, polarization is destabilized in ultrathin films by the intrinsic depolarization field. Here we report robust in-plane ferroelectricity in fewlayer tin sulfide (SnS) 2D crystals that is coupled anisotropically to lattice strain. Specifically, the intrinsic polarization of SnS manifests as nanoripples along the armchair direction due to a converse piezoelectric effect. Most interestingly, such nanoripples show an odd-and-even effect in terms of its layer dependence, indicating that it is highly sensitive to changes in inversion symmetry. Ferroelectric switching is demonstrated in field-effect transistor devices fabricated on ultrathin SnS films, in which a stronger ferroelectric response is achieved at negative gate voltages. Our work shows the promise of 2D SnS in ultrathin ferroelectric field-effect transistors as well as nanoscale electromechanical systems.
Ferroelectric thin film has attracted great interest for nonvolatile memory applications and can be used in either ferroelectric Schottky diodes or ferroelectric tunneling junctions due to its promise of fast switching speed, high on-to-off ratio, and nondestructive readout. Two-dimensional α-phase indium selenide (InSe), which has a modest band gap and robust ferroelectric properties stabilized by dipole locking, is an excellent candidate for multidirectional piezoelectric and switchable photodiode applications. However, the large-scale synthesis of this material is still elusive, and its performance as a ferroresistive memory junction is rarely reported. Here, we report the low-temperature molecular-beam epitaxy (MBE) of large-area monolayer α-InSe on graphene and demonstrate the use of α-InSe on graphene in ferroelectric Schottky diode junctions by employing high-work-function gold as the top electrode. The polarization-modulated Schottky barrier formed at the interface exhibits a giant electroresistance ratio of 3.9 × 10 with a readout current density of >12 A/cm, which is more than 200% higher than the state-of-the-art technology. Our MBE growth method allows a high-quality ultrathin film of InSe to be heteroepitaxially grown on graphene, thereby simplifying the fabrication of high-performance 2D ferroelectric junctions for ferroresistive memory applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.