Detecting and monitoring the usage of antibiotics is a critical aspect of efforts to combat antimicrobial resistance. Antibiotic residue testing with existing LC-MS/MS methods is limited in detection range. Current methods also lack the capacity to detect multiple antibiotic residues in different samples simultaneously. In this study, we demonstrate a methodology that permits simultaneous extraction and detection of antibiotic residues in animal and environmental samples. A total of 30 different antibiotics from 13 classes could be qualitatively detected with our methodology. Further study to reduce analytes’ matrix effect would allow for quantification of antibiotic residues.
Background: Sri Lanka is a low-income country, as defined by the World Bank. The country suffered further economic downturn during the COVID-19 pandemic. This situation adversely affected the prioritization of policies and programs around healthcare and public health. In particular, inflation, fuel prices, and shortage of food supplies increased struggles to implement antimicrobial resistance (AMR) programs. However, in the long run, it is crucial to gather data and evidence to plan AMR policies and track interventions. (1) Aim: To establish and reiterate the importance of prioritizing AMR programs in the One Health framework, the Fleming Fellows collected and studied antimicrobial use/consumption (AMU/AMC) and resistance (AMR) in humans, food-producing animals, and the environment. (2) Methods: A systematic and cross-sectional study was conducted between 2019 and 2021. By way of coordinating an AMU/AMC and AMR prevalence study across six agencies from human health and food-producing animal sectors, the authors established a field epidemiology study, laboratory testing, and data processing at their institutions. AMU/AMC patterns were surveyed using questionnaires and interviews, while AMR samples were collected for antibiotic susceptibility tests and genomic tests. Samples were tested for phenotypic and genotypic resistance. (3) Results: In human samples, resistance was highest to beta-lactam antibiotics. In non-human samples, resistance was highest to erythromycin, a highest-priority, critically important antibiotic defined by the World Health Organization. From government records, tylosin was sold the most in the food-producing animal sector. (4) Conclusions: Sri Lanka AMU and AMR trends in human and non-human sectors can be ascertained by a One Health framework. Further coordinated, consistent, and sustainable planning is feasible, and can help implement an AMU/AMR surveillance system in Sri Lanka.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.