The Ashele Cu-Zn deposit is a typical VMS deposit in Chinese Altay located in the southern margin of the Altaid orogen. The deposit occurred in the polyphase fold system, and the main orebody is located at the hinge of the syncline. All orebodies show lenticular form, and are stratabound by a suite of early to middle Devonian bimodal volcanic rocks. The hosting basalt is low K tholeiite and characterized with high Mg, Fe, Ca and low K, Ti. These basalts show flat REE pattern with Ce negative anomaly (Ce/Ce* 0.73-0.76). Niobium, Ta, Zr, Hf are depleted and Rb, Ba, Th, U, Sr, Pb are enriched with respect to the N-MORB. Both the Sr and Nd isotopes show depleted properties, while the ( 87 Sr/ 86 Sr)i and the eNd(t) range from 0.70469 to 0.70488 and 4.6 to 5.3, respectively. All geochemical and isotopic data from the hosting basalt show that it originates from an island arc source. We also report the S isotope data from the massive orebody, and d 34 S‰ change from 1.8‰ to 5.6‰. The S isotope data provide evidence that the sulfur originates from a mixing source between magma and seawater sulfate. We propose that the mafic magma provides the ore-forming metal and some percentage of sulfur, while it also acts as a heat engine which makes the fluids leach the metal from the underlying volcanic rocks. Combining the geological characteristics of the Ashele and geochemical data, and comparing with other Cu-Zn VMS deposits in the world, we propose that Ashele formed in a rifted arc setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.