We present a thin film crystal ion sliced (CIS) LiNbO phase modulator that demonstrates an unprecedented measured electro-optic (EO) response up to 500 GHz. Shallow rib waveguides are utilized for guiding a single transverse electric (TE) optical mode, and Au coplanar waveguides (CPWs) support the modulating radio frequency (RF) mode. Precise index matching between the co-propagating RF and optical modes is responsible for the device's broadband response, which is estimated to extend even beyond 500 GHz. Matching the velocities of these co-propagating RF and optical modes is realized by cladding the modulator's interaction region in a thin UV15 polymer layer, which increases the RF modal index. The fabricated modulator possesses a tightly confined optical mode, which lends itself to a strong interaction between the modulating RF field and the guided optical carrier; resulting in a measured DC half-wave voltage of 3.8 V·cm. The design, fabrication, and characterization of our broadband modulator is presented in this work.
In this paper we address a significant limitation of silicon as an optical material, namely, the upper bound of its potential modulation frequency. This arises due to finite carrier mobility, which fundamentally limits the frequency response of all-silicon modulators to about 60 GHz. To overcome this limitation, another material must be integrated with silicon to provide increased operational bandwidths. Accordingly, this paper proposes and demonstrates the integration of a thin LiNbO3 device layer with silicon and a novel tuning process that matches the propagation velocities between the propagating radio-frequency (RF) and optical waves. The resulting lithium niobate on silicon (LiNOS) modulator is demonstrated to operate from DC to 110 GHz.
This Letter presents, to the best of our knowledge, the first hybrid Si 3 N 4 -LiNbO 3 -based tunable microring resonator where the waveguide is formed by loading a Si 3 N 4 strip on an electro-optic (EO) material of X -cut thin-film LiNbO 3 . The developed hybrid Si 3 N 4 -LiNbO 3 microring exhibits a high intrinsic quality factor of 1.85 × 10 5 , with a ring propagation loss of 0.32 dB/cm, resulting in a spectral linewidth of 13 pm, and a resonance extinction ratio of ∼27 dB within the optical C-band for the transverse electric mode. Using the EO effect of LiNbO 3 , a 1.78 pm/V resonance tunability near 1550 nm wavelength is demonstrated.
A low voltage operation electro-optic modulator is critical for applications ranging from optical communications to an analog photonic link. This paper reports a hybrid silicon nitride and lithium niobate electro-optic Mach–Zehnder modulator that employs 3 dB multimode interference couplers for splitting and combining light. The presented amplitude modulator with an interaction region length of 2.4 cm demonstrates a DC half-wave voltage of only 0.875 V, which corresponds to a modulation efficiency per unit length of 2.11 V cm. The power extinction ratio of the fabricated device is approximately 30 dB, and the on-chip optical loss is about 5.4 dB.
A small footprint, low voltage and wide bandwidth electro-optic modulator is critical for applications ranging from optical communications to analog photonic links, and the integration of thin-film lithium niobate with photonic integrated circuit (PIC) compatible materials remains paramount. Here, a hybrid silicon nitride and lithium niobate folded electro-optic Mach Zehnder modulator (MZM) which incorporates a waveguide crossing and 3 dB multimode interference (MMI) couplers for splitting and combining light is reported. This modulator has an effective interaction region length of 10 mm and shows a DC half wave voltage of roughly 4.0 V, or a modulation efficiency (Vπ ·L) of roughly 4 V·cm. Furthermore, the device demonstrates a power extinction ratio of roughly 23 dB and shows .08 dB/GHz optical sideband power roll-off with index matching fluid up to 110 GHz, with a 3-dB bandwidth of 37.5 GHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.