A low voltage operation electro-optic modulator is critical for applications ranging from optical communications to an analog photonic link. This paper reports a hybrid silicon nitride and lithium niobate electro-optic Mach–Zehnder modulator that employs 3 dB multimode interference couplers for splitting and combining light. The presented amplitude modulator with an interaction region length of 2.4 cm demonstrates a DC half-wave voltage of only 0.875 V, which corresponds to a modulation efficiency per unit length of 2.11 V cm. The power extinction ratio of the fabricated device is approximately 30 dB, and the on-chip optical loss is about 5.4 dB.
A small footprint, low voltage and wide bandwidth electro-optic modulator is critical for applications ranging from optical communications to analog photonic links, and the integration of thin-film lithium niobate with photonic integrated circuit (PIC) compatible materials remains paramount. Here, a hybrid silicon nitride and lithium niobate folded electro-optic Mach Zehnder modulator (MZM) which incorporates a waveguide crossing and 3 dB multimode interference (MMI) couplers for splitting and combining light is reported. This modulator has an effective interaction region length of 10 mm and shows a DC half wave voltage of roughly 4.0 V, or a modulation efficiency (Vπ ·L) of roughly 4 V·cm. Furthermore, the device demonstrates a power extinction ratio of roughly 23 dB and shows .08 dB/GHz optical sideband power roll-off with index matching fluid up to 110 GHz, with a 3-dB bandwidth of 37.5 GHz.
Segmented, or slow-wave electrodes have emerged as an index-matching solution to improve bandwidth of traveling-wave Mach Zehnder and phase modulators on the thin-film lithium niobate on insulator platform. However, these devices require the use of a quartz handle or substrate removal, adding cost and additional processing. In this work, a high-speed dual-output electro-optic intensity modulator in the thin-film silicon nitride and lithium niobate material system that uses segmented electrodes for RF and optical index matching is presented. The device uses a silicon handle and does not require substrate removal. A silicon handle allows the use of larger wafer sizes to increase yield, and lends itself to processing in established silicon foundries that may not have the capability to process a quartz or fused silica wafer. The modulator has an interaction region of 10 mm, shows a DC half wave voltage of 3.75 V, an ultra-high extinction ratio of roughly 45 dB consistent with previous work, and a fiber-to-fiber insertion loss of 7.47 dB with a 95 GHz 3 dB bandwidth.
A low voltage, wide bandwidth compact electro-optic modulator is a key building block in the realization of tomorrow's communication and networking needs. Recent advances in the fabrication and application of thin-film lithium niobate, and its integration with photonic integrated circuits based in silicon make it an ideal platform for such a device. In this work, a high-extinction dual-output folded electro-optic Mach Zehnder modulator in the silicon nitride and thin-film lithium niobate material system is presented. This modulator has an interaction region length of 11 mm and a physical length of 7.8 mm. The device demonstrates a fiber-to-fiber loss of roughly 12 dB using on-chip fiber couplers and DC half wave voltage (Vπ) of less than 3.0 V, or a modulation efficiency (Vπ•L) of 3.3 V•cm. The device shows a 3 dB bandwidth of roughly 30 GHz. Notably, the device demonstrates a power extinction ratio over 45 dB at each output port without the use of cascaded directional couplers or additional control circuitry; roughly 31 times better than previously reported devices. Paired with a balanced photo-diode receiver, this modulator can be used in various photonic communication systems. Such a detecting scheme is compatible with complex modulation formats such as differential phase shift keying and differential quadrature phase shift keying, where a dualoutput, ultra-high extinction device is fundamentally paramount to low-noise operation of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.