Long-term or excessive oxidative stress can cause serious damage to fish. Squalene can be added to feed as an antioxidant to improve the body constitution of fish. In this study, the antioxidant activity was detected by 2,2-diphenyl-1-acrylhydrazyl (DPPH) test and fluorescent probe (dichloro-dihydro-fluorescein diacetate). Transgenic Tg (lyz: DsRed2) zebrafish were used to evaluate the effect of squalene on CuSO4-induced inflammatory response. Quantitative real-time reverse transcription polymerase chain reaction was used to examine the expression of immune-related genes. The DPPH assay demonstrated that the highest free radical scavenging exerted by squalene was 32%. The fluorescence intensity of reactive oxygen species (ROS) decreased significantly after 0.7% or 1% squalene treatment, and squalene could exert an antioxidative effect in vivo. The number of migratory neutrophils in vivo was significantly reduced after treatment with different doses of squalene. Moreover, compared with CuSO4 treatment alone, treatment with 1% squalene upregulated the expression of sod by 2.5-foldand gpx4b by 1.3-fold to protect zebrafish larvae against CuSO4-induced oxidative damage. Moreover, treatment with 1% squalene significantly downregulated the expression of tnfa and cox2. This study showed that squalene has potential as an aquafeed additive to provide both anti-inflammatory and antioxidative properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.