Objective. Here, we propose a dynamic residual Kaczmarz (DRK) method as an improved reconstruction method for magnetic particle imaging (MPI) to achieve a better reconstruction quality from high-noise signals. Approach. Based on the Kaczmarz (KZ) method, we introduced a residual vector to select parts of the low-noise equations for reconstruction. In each iteration, a low-noise subset was formulated based on the residual vector. Thus, the reconstruction converged to an accurate result with less noise. Main Results. To evaluate the performance of the proposed method, it was compared with classical Kaczmarz-type methods and state-of-the-art regularization models. The numerical simulation results demonstrate that the DRK method can achieve better reconstruction quality than all other comparison methods at similar noise levels. It can acquire a signal-to-background ratio (SBR) that is five times higher than that of classical Kaczmarz-type methods at a 5 dB noise level. Furthermore, the DRK method can acquire up to 0.7 structural similarity (SSIM) indicators at a 5 dB noise level when combined with the non-negative fused LASSO regularization model. In addition, a real experiment based on the OpenMPI data set validated that the proposed DRK method can be applied to real data and perform well. Significance. The experimental results demonstrate that the proposed DRK method can significantly improve the reconstruction quality of MPI when the signals contain high noise. It has the potential to be applied to MPI instruments that contain high signal noise, such as human-sized MPI instruments. It is beneficial for expanding the biomedical applications of MPI technology
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.