Magnetic particle imaging (MPI) is a promising medical modality that can image superparamagnetic iron-oxide nanoparticle (SPIO) concentration distributions safely and with high sensitivity. In the x-space reconstruction algorithm, the Langevin function is inaccurate in modeling the dynamic magnetization of SPIOs. This problem prevents the x-space algorithm from achieving a high spatial resolution reconstruction. Methods: We propose a more accurate model to describe the dynamic magnetization of SPIOs, named the modified Jiles-Atherton (MJA) model, and apply it to the x-space algorithm to improve the image resolution. Considering the relaxation effect of SPIOs, the MJA model generates the magnetization curve via an ordinary differential equation. Three modifications are also introduced to further improve its accuracy and robustness. Results: In magnetic particle spectrometry experiments, the MJA model shows higher accuracy than the Langevin and Debye models under various test conditions. The average root-mean-square error
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.