Highly ordered Prussian blue nanowire arrays with diameters of about 50 nm and lengths up to 4µm have been fabricated for the first time by an electrodepositing technology with two-step anodizing anodic aluminum oxide films. X-ray diffraction and transmission electron microscopy measurement results show that the Prussian blue nanowires are dense, continuous, and highly crystalline with an fcc cubic structure of a ) 10.14 Å. The Mo 1ssbauer spectrum and infrared spectrum at room temperature indicate that the nanowires are ferric ferrocyanide: one kind of iron is Fe 3+ with high spin and the other is Fe 2+ with low spin. Magnetic property measurement results indicate that the Curie temperature of Prussian blue nanowire decreases as the average numbers of magnetic interaction neighbors is reduced.
Since Notch signaling plays a critical role in stem cells and oncogenesis, we hypothesized that Notch signaling might play roles in cancer stem cells and cancer cells with a stem cell phenotype. In this study, we accessed potential functions of the Notch pathway in the formation of cancer stem cells using human glioma. Using RT-PCR, we found that most human astrogliomas of different grades expressed moderate to high level of Notch receptors and ligands. mRNA of Hes5 but not Hes1, both of which are major downstream molecules of the Notch pathway, was also detected. In human glioma cell lines BT325, U251, SHG-44, and U87, mRNA encoding different types of Notch receptors were detected, but active form of Notch1 (NIC) was only detected in SHG-44 and U87 by Western blot. Interestingly, proliferation of these two glioma cell lines appeared faster than that of the other two lines in which NIC was not detected. We have over-expressed NIC of Notch1 in SHG-44 cells by constitutive transfection to evaluate the effects of Notch signaling on glioma cells. Our results showed that over-expression of NIC in SHG-44 cells promoted the growth and the colony-forming activity of SHG-44 cells. Interestingly, over-expression of NIC increased the formation neurosphere-like colonies in the presence of growth factors. These colonies expressed nestin, and could be induced to cells expressing neuron-, astrocyte-, or oligodendrocyte-specific markers, consistent with phenotypes of neural stem cells. These data suggest that Notch signaling promote the formation of cancer stem cell-like cells in human glioma.
Background: Trimethylamine N-oxide (TMAO) is reported to promote the pathogenesis of atherosclerosis and be associated with cardiovascular events risk. It is unknown whether plasma TMAO is associated with plaque morphology in patients with acute myocardial infarction. We investigated the relationship between the culprit plaque morphology and plasma TMAO concentration in patients with ST-segment–elevation myocardial infarction. Methods and Results: A prospective series of 211 patients with ST-segment–elevation myocardial infarction who underwent preintervention optical coherence tomography examination for the culprit lesion were enrolled; 77 and 69 patients were categorized as plaque rupture and plaque erosion, respectively. Plasma TMAO levels, detected using stable isotope dilution liquid chromatography tandem mass spectrometry, were significantly higher in patients with plaque rupture than in those with plaque erosion (3.33 μM; interquartile range: 2.48–4.57 versus 1.21 μM; interquartile range: 0.86–1.91; P <0.001). After adjustments for traditional risk factors, elevated TMAO levels remained independently correlated with plaque rupture (adjusted odds ratio: 4.06, 95% CI, 2.38–6.91; P <0.001). The area under the receiver operating characteristic curve for plaque rupture versus plaque erosion was 0.89. At a cutoff level of 1.95 μM, TMAO had a sensitivity of 88.3% and specificity of 76.8% in discriminating plaque rupture from plaque erosion. Conclusions: High levels of plasma TMAO independently correlated with plaque rupture in patients with ST-segment–elevation myocardial infarction. Moreover, TMAO might be a useful biomarker for plaque rupture to improve risk stratification and management in patients with ST-segment–elevation myocardial infarction. Clinical Trial Registration: URL: https://www.clinicaltrials.gov . Unique identifiers: NCT03593928.
Background Diabetes mellitus (DM) or pre-diabetes status is closely associated with features of vulnerable coronary lesions in patients with stable coronary heart disease or acute coronary syndrome. However, the association between duration of diabetes and the morphologies and features of vulnerable plaques has not been fully investigated in patients with acute myocardial infarction (AMI). Methods We enrolled a total of 279 patients who presented with AMI between March 2017 and March 2019 and underwent pre-intervention optical coherence tomography imaging of culprit lesions. Patients with DM were divided into two subgroups: a Short-DM group with DM duration of < 10 years and a Long-DM group with DM duration of ≥ 10 years. Baseline clinical data and culprit-plaque characteristics were compared between patients without DM (the non-DM group), those in the Short-DM group, and those in the Long-DM group. Results Patients with DM represented 34.1% of the study population (95 patients). The Short- and Long-DM groups included 64 (67.4%) and 31 patients (32.6%), respectively. Glycated hemoglobin A1c (HbA1c) levels were significantly higher in the Long-DM group than the Non- or Short-DM groups (8.4% [Long-DM] versus 5.7% [Non-DM] and 7.6% [Short-DM], P < 0.001). In addition, the highest prevalence of lipid-rich plaques, thin-cap fibroatheroma (TCFA), and plaque ruptures of culprit lesions were observed in the Long-DM group (lipid-rich plaques: 80.6% [Long-DM] versus 52.2% [Non-DM] and 62.5% [Short-DM], P = 0.007; TCFA: 41.9% [Long-DM] versus 19.6% [Non-DM] and 31.3% [Short-DM], P = 0.012; plaque rupture: 74.2% [Long-DM] versus 46.7% [Non-DM] and 48.4% [Short-DM], P = 0.017). The frequency of calcification was significantly higher among patients with DM than among those without (62.1% versus 46.2%, P = 0.016); however, no significant differences were found between the DM subgroups (61.3% [Long-DM] versus 62.5% [Short-DM], P = 0.999). Conclusions Increased duration of DM combined with higher HbA1c levels influences culprit-plaque characteristics in patients with DM who suffer AMI. These findings might account for the higher risks of cardiac death in DM patients with long disease duration. Trial registration This study is registered at clinicaltrials.gov as NCT03593928
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.