Summary
Synaptotagmin, complexin and neuronal SNARE proteins mediate evoked synchronous neurotransmitter release, but the molecular mechanisms mediating the cooperation between these molecules remain unclear. Here, we determined crystal structures of the primed pre-fusion SNARE-complexin-synaptotagmin-1 complex. These structures reveal an unexpected tripartite interface between synaptotagmin-1 and both the SNARE complex and complexin. Simultaneously, a second synaptotagmin-1 molecule interacted with the other side of the SNARE complex via the previously identified primary interface. Mutations that disrupt either interface in solution also severely impaired evoked synchronous release in neurons, suggesting that both interfaces are essential for the primed pre-fusion state. Ca2+ binding to the synaptotagmin-1 molecules unlocks the complex, allows full zippering of the SNARE complex, and triggers membrane fusion. The tripartite SNARE-complexin-synaptotagmin-1 complex at a synaptic vesicle docking site has to be unlocked for triggered fusion to commence, explaining the cooperation between complexin and synaptotagmin-1 in synchronizing evoked release on the sub-millisecond timescale.
In forebrain neurons, knockout of synaptotagmin-1 blocks fast Ca2+-triggered synchronous neurotransmitter release, but enables manifestation of slow Ca2+-triggered asynchronous release. Here, we show using single-cell PCR that individual hippocampal neurons abundantly co-express two Ca2+-binding synaptotagmin isoforms, synaptotagmin-1 and synaptotagmin-7. In synaptotagmin-1 deficient synapses of excitatory and inhibitory neurons, loss-of-function of synaptotagmin-7 suppressed asynchronous release. This phenotype was rescued by wild-type but not mutant synaptotagmin-7 lacking functional Ca2+-binding sites. Even in synaptotagmin-1 containing neurons, synaptotagmin-7 ablation partly impaired asynchronous release induced by extended high-frequency stimulus trains. Synaptotagmins bind Ca2+ via two C2-domains, the C2A- and C2B-domains. Surprisingly, synaptotagmin-7 function selectively required its C2A-domain Ca2+-binding sites, whereas synaptotagmin-1 function required its C2B-domain Ca2+-binding sites. Our data show that nearly all Ca2+-triggered release at a synapse is due to synaptotagmins, with synaptotagmin-7 mediating a slower form of Ca2+-triggered release that is normally occluded by faster synaptotagmin-1-induced release, but becomes manifest upon synaptotagmin-1 deletion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.