In recent years, Bacillus species have received considerable attention for the biological control of many fungal diseases. In this study, Bacillus amyloliquefaciens Q-426 was tested for its potential use against a variety of plant pathogens. Our screen for genes involved in the biosynthesis of antifungal agents revealed that the fen and bmy gene clusters are present in the Q-426 genome. Lipopeptides such as bacillomycin D, fengycin A, and fengycin B were purified from the bacterial culture broth and subsequently identified by ESI-mass spectrometry. The minimal inhibitory concentration of fengycin A against Fusarium oxysporum f. sp. spinaciae W.C. Snyder & H.N. Hansen O-27 was determined to be 31.25 μg ml(-1) . However, exposure of fungal cells to 50 μg ml(-1) of fengycin A did not allow permeation of fluorescein diacetate into the cytoplasm through the cell membrane. Moreover, leakage of intracellular inorganic cations, nucleic acid and protein were also not detected, indicating that the fungal cell membrane is not the primary target of action for fengycin A. Profound morphological changes were observed in the F. oxysporum strain and spore germination was completely inhibited, suggesting that 50 μg ml(-1) of fengycin A acts, at least, as a fungistatic agent.
SummaryBacteria possess an extraordinary repertoire for intercellular communication and social behaviour. This repertoire for bacterial communication, termed as quorum sensing (QS), depends on specific diffusible signal molecules. There are many different kinds of signal molecules in the bacterial community. Among those signal molecules, N‐acyl homoserine lactones (HSLs, in other publications also referred to as AHLs, acy‐HSLs etc.) are often employed as QS signal molecules for many Gram‐negative bacteria. Due to the specific structure and tiny amount of those HSL signal molecules, the characterization of HSLs has been the subject of extensive investigations in the last decades and has become a paradigm for bacteria intercellular signalling. In this article, different methods, including extraction, purification and characterization of HSLs, are reviewed. The review provides an insight into identification and characterization of new HSLs and other signal molecules for bacterial intercellular communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.