Compared with open waters, congested inland waters have narrow waterways, many river-crossing bridges, a high density of navigation, and high current velocity in some sections. In this study, an improved collision avoidance algorithm based on model predictive control (MPC) is proposed to solve the problem of collision avoidance for autonomous surface vehicles (ASVs) in congested inland waters. First, considering the influence of current, the collision avoidance problem of ASVs is transformed into a nonlinear programming problem, and the kinematics of ASVs and the boundary of the channel are regarded as its inequality constraints. Next, since ASVs cannot perform large-scale collision avoidance in congested inland waters, the strategy of reducing the speed and slightly changing the yaw angle is adopted to realize collision avoidance. Then, an improved dynamic bumper model is used to model the safe zone of ASVs and dynamic obstacles, which improves the efficiency of the algorithm and the safety of ASVs. Finally, the collision avoidance rules and the evaluation function of the collision avoidance maneuver are constructed in the cost function of the algorithm. The simulation experiments in different encounter scenarios show that the proposed algorithm significantly improves the rationality and compliance of ASVs’ autonomous collision avoidance in congested inland waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.