Objective
Bone regeneration involves a coordinated cascade of events that are regulated by several cytokines and growth factors, among which bone morphogenic protein-2 (BMP-2), vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) play important roles. In this study, we investigated the effects of dual release of the three growth factors on bone regeneration in femur defects.
Methods
A composite consisting of Gelatin microparticles loaded with VEGF/FGF-2 and poly(lactic-co-glycolic acid)-poly(ethylene glycol)-carboxyl (PLGA-PEG-COOH) microparticles loaded with BMP-2 encapsulated in a nano hydroxyapatite-poly actic-co-glycolic acid (nHA-PLGA) scaffold was prepared for the dual release of the growth factors.
Results
On the 14th day, decreased release rate of BMP-2 compared with FGF-2 and VEGF was observed. However, after 14 days, compared to FGF-2 and VEGF, BMP-2 showed an increased release rate. Controlled dual release of BMP-2 and VEGF, FGF-2 resulted in a significant osteogenic differentiation of bone mesenchymal stem cells (BMSCs). Moreover, effects of the composite scaffold on functional connection of osteoblast-vascular cells during bone development were evaluated. The synergistic effects of dual delivery of growth factors were shown to promote the expression of VEGF in BMSCs. Increased secretion of VEGF from BMSCs promoted the proliferation and angiogenic differentiation of human umbilical vein endothelial cells (HUVECs) in the co-culture system. At 12 weeks after implantation, blood vessel and bone formation were analyzed by micro-CT and histology. The composite scaffold significantly promoted the formation of blood vessels and new bone in femur defects.
Conclusions
These findings demonstrate that dual delivery of angiogenic factors and osteogenic factors from Gelatin and PLGA-PEG-COOH microparticles-based composite scaffolds exerted an osteogenic-angiogenic coupling effect on bone regeneration. This approach will inform on the development of appropriate designs of high-performance bioscaffolds for bone tissue engineering.
Self‐assembled DNA nanostructures hold great potentials in biomedical applications. Nevertheless, the negatively charged DNA backbone and susceptivity to enzyme degradation pose challenges to this regard. Engineering the surface properties of DNA nanostructures by assembling DNA with guest molecules in magnesium‐free system is promising to solve these issues. In this study, the polyamines‐mediated DNA self‐assembly with an emphasis on the valency of polyamines is investigated. Both spermine, spermidine, and putrescine can assemble DNA tetrahedron under appropriate concentrations. The cytotoxicity and cellular uptake efficiencies vary with the polyamine valency. Compared with magnesium‐assembled DNA tetrahedron, polyamine‐assembled DNA tetrahedron exhibits higher cellular uptake efficiency and serum stability. Circular dichroism spectrum results indicate that polyamines induce DNA conformation slightly shifting from B form to A form. The improved performances of polyamine‐assembled DNA tetrahedrons under physiological settings are attributed to the surface properties that altered by guest molecules polyamine. The current study suggests that engineering the surface properties of DNA nanostructures by assembling them with guest cationic species is promising to further their biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.