The cytostatic drug from traditional Chinese medicinal herb has acted as a chemotherapeutic agent used in treatment of a wide variety of cancers. Oxymatrine, classified as a quinolizidine alkaloid, is a phytochemical product derived from Sophora flavescens, and has been reported to possess anticancer activities. However, the cancer growth inhibitory effects and molecular mechanisms in human osteosarcoma MNNG/HOS cell have not been well studied. In the present study, the cytotoxic effects of oxymatrine on MNNG/HOS cells were examined by MTT and bromodeoxyuridine (BrdU) incorporation assays. The percentage of apoptotic cells and the level of mitochondrial membrane potential (Δψ m) were assayed by flow cytometry. The levels of apoptosis-related proteins were measured by Western blot analysis or enzyme assay Kit. Our results showed that treatment with oxymatrine resulted in a significant inhibition of cell proliferation and DNA synthesis in a dose-dependent manner, which has been attributed to apoptosis. Furthermore, we found that oxymatrine considerably inhibited the expression of Bcl-2 whilst increasing that of Bax. This promoted mitochondrial dysfunction, leading to the release of cytochrome c from the mitochondria to the cytoplasm, as well as the activation of caspase-9 and -3. Moreover, addition of oxymatrine to MNNG/HOS cells also attenuated phosphatidylinositol 3-kinase (PI3K) ⁄Akt signaling pathway cascade, evidenced by the dephosphorylation of P13K and Akt. Likewise, oxymatrine significantly suppressed tumor growth in female BALB/C nude mice bearing MNNG/HOS xenograft tumors. In addition, no evidence of drug-related toxicity was identified in the treated animals by comparing the body weight increase and mortality. Therefore, these findings should be useful for understanding the apoptotic cellular mechanism mediated by oxymatrine and might offer a therapeutic potential advantage for human osteosarcoma chemoprevention or chemotherapy.
Keywordsacupuncture, electroacupuncture, indications, biological mechanisms, common acupuncture points Acupuncture has been used to treat various disease for more than 3,000 years in China and other Asian countries. As a complementary and alternative therapy, it has gained increasing popularity and acceptance among public and healthcare professionals in the West. Over the past few decades, basic and clinical research on acupuncture has made considerable progress. Internationally recognized evidence from clinical studies has been published, a preliminary system to clinically evaluate acupuncture has been created, and some clinical guidelines have been formulated. Moreover, scientists have strived to explore the physiological and biological mechanisms of acupuncture. Some basic studies have indicated that acupuncture has various actions, such as analgesic, muscle relaxing, antiinflammatory, mild anxiolytic, and antidepressant actions, with possible biological mechanisms such as central sensitization, neurotransmitters, the intestinal flora, immune regulation, oxidative stress, and neuroinflammation. The current review describes the common indications for acupuncture recommended by the WHO and the use of acupuncture in China, the United States, Australia, and several other countries. This review then summarized the mechanisms by which acupuncture treats common conditions including lower back pain (LBP), ischemic stroke, depression, and irritable bowel syndrome (IBS) and it also cited specific acupuncture points for treating these conditions. The hope is that this review will provide useful information for both acupuncturists and researchers to better understand the mechanisms of acupuncture and reasons for its usage.
BackgroundHydroxysafflor Yellow A (HSYA), which is one of the most important active ingredients of the Chinese herb Carthamus tinctorius L, is widely used in the treatment of cerebrovascular and cardiovascular diseases. However, the potential protective effect of HSYA in spinal cord ischemia/reperfusion (I/R) injury is still unknown.MethodsThirty-nine rabbits were randomly divided into three groups: sham group, I/R group and HSYA group. All animals were sacrificed after neurological evaluation with modified Tarlov criteria at the 48th hour after reperfusion, and the spinal cord segments (L4-6) were harvested for histopathological examination, biochemical analysis and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining.ResultsNeurological outcomes in HSYA group were slightly improved compared with those in I/R group. Histopathological analysis revealed that HSYA treatment attenuated I/R induced necrosis in spinal cords. Similarly, alleviated oxidative stress was indicated by decreased malondialdehyde (MDA) level and increased superoxide dismutase (SOD) activity after HSYA treatment. Moreover, as seen from TUNEL results, HSYA also protected neurons from I/R-induced apoptosis in rabbits.ConclusionsThese findings suggest that HSYA may protect spinal cords from I/R injury by alleviating oxidative stress and reducing neuronal apoptosis in rabbits.
Postherpetic neuralgia (PHN), the most common complication of herpes zoster (HZ), plays a major role in decreased life quality of HZ patients. However, the neural mechanisms underlying PHN remain unclear. Here, using a PHN rat model at 2 weeks after varicella zoster virus infection, we found that spinal astrocytes were dramatically activated. The mechanical allodynia and spinal central sensitization were significantly attenuated by intrathecally injected L-α-aminoadipate (astrocytic specific inhibitor) whereas minocycline (microglial specific inhibitor) had no effect, which indicated that spinal astrocyte but not microglia contributed to the chronic pain in PHN rat. Further study was taken to investigate the molecular mechanism of astrocyte-incudced allodynia in PHN rat at post-infection 2 weeks. Results showed that nitric oxide (NO) produced by inducible nitric oxide synthase mediated the development of spinal astrocytic activation, and activated astrocytes dramatically increased interleukin-1β expression which induced N-methyl-D-aspartic acid receptor (NMDAR) phosphorylation in spinal dorsal horn neurons to strengthen pain transmission. Taken together, these results suggest that spinal activated astrocytes may be one of the most important factors in the pathophysiology of PHN and “NO-Astrocyte-Cytokine-NMDAR-Neuron” pathway may be the detailed neural mechanisms underlying PHN. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for clinical management of PHN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.