Melt electrospinning is a cheaper, more environmentally friendly, and safer alternative to solution electrospinning. We have designed a novel melt spinning device which incorporates a reverse of the normal polarity, with the capillary grounded and the collector grid at positive potential. The apparatus is much simpler and more economical than conventional equipment because no syringe pump is required. Low-density polyethylene (LDPE) with a low-melt flow index of 2 g/10 min, which is not suitable for spinning using current commercial methods, was chosen to highlight the advantages of melt electrospinning in general, and our device in particular. The effects of varying the electrospinning parameters such as temperature, electrostatic field, spinning distance, and capillary inner diameter, have been studied. Although it was found that temperatures higher than normal processing temperatures had to be employed in our electrospinning system to reduce the viscosity of the polymer melt sufficiently, good quality fibers with smooth and even surfaces, most of which had diameters smaller than 15 lm, were electrospun successfully. It was observed that there was an optimum point for the spinning distance (14-15 cm) and the capillary inner diameter (0.4-0.6 mm) to get fine fiber.
In this letter, we consider the varying detection environments to address the problem of detecting small targets within sea clutter. We first extract three simple yet practically discriminative features from the returned signals in the time and frequency domains and then fuse them into a 3-D feature space. Based on the constructed space, we then adopt and elegantly modify the support vector machine (SVM) to design a learningbased detector that enfolds the false alarm rate (FAR). Most importantly, our proposed detector can flexibly control the FAR by simply adjusting two introduced parameters, which facilitates to regulate detector's sensitivity to the outliers incurred by the sea spikes and to fairly evaluate the performance of different detection algorithms. Experimental results demonstrate that our proposed detector significantly improves the detection probability over several existing classical detectors in both low signal to clutter ratio (SCR) (up to 58%) and low FAR (up to 40%) cases.
Recently, functional applications of thermoplastic foams have received extensive attention from the research and materials communities, focusing on their various applications, key challenges, material systems designs, processing methods, and cellular structure characteristics needed for specific functional applications. This review paper starts with consideration of the microcellular foaming mechanism and basic concepts of microcellular foam processing, followed by polymer modification methods, and crucial factors that determine the performance of thermoplastic foams. Special emphasis has been placed on the synergies between foaming and reinforcements, including functional fillers and polymer blends; improvements in homogeneous, functional properties by achieving uniform cell structure and cell dispersion in polymer systems; and comparison of melt processing and solvent-based methods. Then, a wide array of advanced functional applications for foams-such as lightweight applications, heat and sound insulation, electromagnetic shielding, tissue engineering, oil spill cleanup, shape memory, and flexible materials-will be presented. In particular, the relationships between cellular structure and anticipated properties-including mechanical, barrier, dielectric, biomedical, and other properties required in advanced functional applications-will be discussed. Finally, we will outline a future perspective of lightweight and functional foams and suggest recommended future work regarding functional microcellular foams.
Cell structure is a key factor that determines the final properties of microcellular polylactide (PLA) product. In the mold opening process, adjusting the rate of mold opening can effectively control cell structure. PLA and PLA composites with a void fraction as high as 50% were fabricated using the mold opening technique. The effects of mold opening rate and the addition of nanoclay on the cell structure, mechanical properties, and surface quality of microcellular PLA and PLA composites samples were investigated. The results showed that finer cell structure was received in the microcellular PLA samples and the surface quality was improved effectively when decreasing the rate of mold opening. The effect of mold opening rate on the foaming behavior of microcellular PLA-nanoclay was the same as that of microcellular PLA. The addition of 5 wt % nanoclay significantly improved the foaming properties, such as cell density, cell size, and structural uniformity, which consequently enhanced the mechanical properties of foams and the surface quality.
To obtain accurate prediction of service performance and service life of polymers and to optimize the processing parameters, a modified online measurement was used to measure the pressure-volume-temperature (PVT) properties of polymers under certain processing conditions. The measurement was based on an injection molding machine, and it was used to obtain the PVT data of polymers directly with a special testing mold under normal processing conditions. The PVT properties of a semicrystalline polymer, polypropylene, were measured through both an online testing mold and a conventional piston-die dilatometer. The PVT properties were correlated by a modified two-domain Tait equation of state. The differences between the two groups of PVT data measured were investigated, and relative differences, especially in the rubbery state because of different cooling or heating measuring modes and sample forms, were observed. Numerical simulations of injection-molding processes were carried out by Moldflow software with both of the types of PVT data. The resulting online PVT data exhibited improvement in the accurate prediction of shrinkage and warpage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.