SUMMARY
Programmed cell death (PCD) plays critical roles in plant immunity but
must be regulated to prevent excessive damage. The E3 ubiquitin ligase SPL11
negatively regulates PCD and immunity in plants. We show that SPL11
cell-death suppressor 2 (SDS2), an
S-domain receptor-like kinase, positively regulates PCD and immunity in rice by
engaging and regulating SPL11 and related kinases controlling defense responses.
An sds2 mutant shows reduced immune responses and enhanced
susceptibility to the blast fungus Magnaporthe oryzae.
Conversely, SDS2 over-expression induces constitutive PCD
accompanied by elevated immune responses and enhanced resistance to M.
oryzae. SDS2 interacts with and phosphorylates SPL11, which in turn
ubiquitinates SDS2, leading to its degradation. In addition, SDS2 interacts with
related receptor-like cytoplasmic kinases, OsRLCK118/176, that positively
regulate immunity by phosphorylating the NADPH oxidase OsRbohB to stimulate ROS
production. Thus, a plasma membrane-resident protein complex consisting of SDS2,
SPL11, and OsRLCK118/176 controls PCD and immunity in rice.
Programmed cell death (PCD) is a physiological process to remove redundant or harmful cells, for the development of multicellular organisms, or for restricting the spread of pathogens (hypersensitive response). Metacaspases are cysteine-dependent proteases which play an essential role in PCD. Triticum aestivum metacaspase 4 (TaMCA4) is a type II metacaspase gene cloned from 'Suwon11' wheat, with typical structural features such as peptidase C14 caspase domain and a long linker sequence between the two subunits. Transient expression of TaMCA4 in tobacco leaves failed to induce PCD directly but enhanced cell death triggered by a mouse Bax gene or a candidate effector gene from Puccinia striiformis f. sp. tritici. Enhancement of PCD was also observed in wheat leaves co-bombarded with TaMCA4. When challenged with the avirulent race of P. striiformis f. sp. tritici, the expression level of TaMCA4 in wheat leaves was sharply upregulated, whereas the transcript level was not significantly induced by the virulent race. Moreover, knocking down TaMCA4 expression by virus-induced gene silencing enhanced the susceptibility of Suwon11 to the avirulent race of P. striiformis f. sp. tritici and reduced the necrotic area at infection sites.
Puccinia striiformis f. sp. tritici (Pst) is an obligate biotrophic fungus that causes the destructive wheat stripe rust disease worldwide. Due to the lack of reliable transformation and gene disruption method, knowledge about the function of Pst genes involved in pathogenesis is limited. Mitogen-activated protein kinase (MAPK) genes have been shown in a number of plant pathogenic fungi to play critical roles in regulating various infection processes. In the present study, we identified and characterized the first MAPK gene PsMAPK1 in Pst. Phylogenetic analysis indicated that PsMAPK1 is a YERK1 MAP kinase belonging to the Fus3/Kss1 class. Single nucleotide polymerphisms (SNPs) and insertion/deletion were detected in the coding region of PsMAPK1 among six Pst isolates. Real-time RT-PCR analyses revealed that PsMAPK1 expression was induced at early infection stages and peaked during haustorium formation. When expressed in Fusarium graminearum, PsMAPK1 partially rescued the map1 mutant in vegetative growth and pathogenicity. It also partially complemented the defects of the Magnaporthe oryzae pmk1 mutant in appressorium formation and plant infection. These results suggest that F. graminearum and M. oryzae can be used as surrogate systems for functional analysis of well-conserved Pst genes and PsMAPK1 may play a role in the regulation of plant penetration and infectious growth in Pst.
Small GTP-binding proteins function as regulators of specific intercellular fundamental biological processes. In this study, a small GTP-binding protein Rab7 gene, designated as TaRab7, was identified and characterized from a cDNA library of wheat leaves infected with Puccinia striiformis f. sp. tritici (Pst) the wheat stripe rust pathogen. The gene was predicted to encode a protein of 206 amino acids, with a molecular mass of 23.13 KDa and an isoeletric point (pI) of 5.13. Further analysis revealed the presence of a conserved signature that is characteristic of Rab7, and phylogenetic analysis demonstrated that TaRab7 has the highest similarity to a small GTP binding protein gene (BdRab7-like) from Brachypodium distachyon. Quantitative real-time PCR assays revealed that the expression of TaRab7 was higher in the early stage of the incompatible interactions between wheat and Pst than in the compatible interaction, and the transcription level of TaRab7 was also highly induced by environmental stress stimuli. Furthermore, knocking down TaRab7 expression by virus induced gene silencing enhanced the susceptibility of wheat cv. Suwon 11 to an avirulent race CYR23. These results imply that TaRab7 plays an important role in the early stage of wheat-stripe rust fungus interaction and in stress tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.