Housing is among the most pressing issues in urban China and has received considerable scholarly attention. Researchers have primarily concentrated on identifying the factors that influence residential property prices and how such mechanisms function. However, few studies have examined the potential factors that influence housing prices from a big data perspective. In this article, we use a big data perspective to determine the willingness of buyers to pay for various factors. The opinions and geographical preferences of individuals for places can be represented by visit frequencies given different motivations. Check-in data from the social media platform Sina Visitor System is used in this article. Here, we use kernel density estimation (KDE) to analyse the spatial patterns of check-in spots (or places of interest, POIs) and employ the Getis-Ord method to identify the hot spots for different types of POIs in Shenzhen, China. New indexes are then proposed based on the hot-spot results as measured by check-in data to analyse the effects of these locations on housing prices. This modelling is performed using the hedonic price method (HPM) and the geographically weighted regression (GWR) method. The results show that the degree of clustering of POIs has a significant influence on housing values. Meanwhile, the GWR method has a better interpretive capacity than does the HPM because of the former method’s ability to capture spatial heterogeneity. This article integrates big social media data to expand the scope (new study content) and depth (study scale) of housing price research to an unprecedented degree.
Rain-shelter cultivation is an effective cultural method to prevent rainfall damage during grape harvest and widely applied in the Chinese rainy regions. In this study we investigated the effect of rain-shelter cultivation on grape diseases and phenolic composition in the skins of Vitis vinifera cv. Cabernet Gernischet grape berries through the comparison with open-field cultivation at two vintages (2010 and 2011). The results showed that rain-shelter cultivation reduced the incidence of grape diseases significantly and delayed the maturation of Cabernet Gernischet fruits. With regards to most of the phenolic compounds identified in this study, their content in grape samples under rain-shelter cultivation was decreased compared to those under open-field cultivation. However, rain-shelter cultivation stimulated the accumulation of dihydroquercetin-3-O-rhamnoside in grape skins during grape maturation. These were related with micrometeorological alterations in vineyards by using plastic covering under rain-shelter cultivation. It suggests the rain-shelter cultivation makes possible the cultivation of “Cabernet Gernischet” grapes in an organic production system, for providing a decrease in the incidence of diseases and the dependence on chemical pesticides in the grape and wine industry.
Human epidermal growth factor 2 (HER2)+ breast cancer is considered the most dangerous type of breast cancers. Herein, we used bioinformatics methods to identify potential key genes in HER2+ breast cancer to enable its diagnosis, treatment, and prognosis prediction. Datasets of HER2+ breast cancer and normal tissue samples retrieved from Gene Expression Omnibus and The Cancer Genome Atlas databases were subjected to analysis for differentially expressed genes using R software. The identified differentially expressed genes were subjected to gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses followed by construction of protein-protein interaction networks using the STRING database to identify key genes. The genes were further validated via survival and differential gene expression analyses. We identified 97 upregulated and 106 downregulated genes that were primarily associated with processes such as mitosis, protein kinase activity, cell cycle, and the p53 signaling pathway. Visualization of the protein-protein interaction network identified 10 key genes ( CCNA2, CDK1, CDC20, CCNB1, DLGAP5, AURKA, BUB1B, RRM2, TPX2, and MAD2L1), all of which were upregulated. Survival analysis using PROGgeneV2 showed that CDC20, CCNA2, DLGAP5, RRM2, and TPX2 are prognosis-related key genes in HER2+ breast cancer. A nomogram showed that high expression of RRM2, DLGAP5, and TPX2 was positively associated with the risk of death. TPX2, which has not previously been reported in HER2+ breast cancer, was associated with breast cancer development, progression, and prognosis and is therefore a potential key gene. It is hoped that this study can provide a new method for the diagnosis and treatment of HER2 + breast cancer.
Background Breast cancer subtypes are statistically associated with prognosis. The search for markers of breast tumor heterogeneity and the development of precision medicine for patients are the current focuses of the field. Methods We used a bioinformatic approach to identify key disease-causing genes unique to the luminal A and basal-like subtypes of breast cancer. First, we retrieved gene expression data for luminal A breast cancer, basal-like breast cancer, and normal breast tissue samples from The Cancer Genome Atlas database. The differentially expressed genes unique to the 2 breast cancer subtypes were identified and subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. We constructed protein–protein interaction networks of the differentially expressed genes. Finally, we analyzed the key modules of the networks, which we combined with survival data to identify the unique cancer genes associated with each breast cancer subtype. Results We identified 1114 differentially expressed genes in luminal A breast cancer and 1042 differentially expressed genes in basal-like breast cancer, of which the subtypes shared 500. We observed 614 and 542 differentially expressed genes unique to luminal A and basal-like breast cancer, respectively. Through enrichment analyses, protein–protein interaction network analysis, and module mining, we identified 8 key differentially expressed genes unique to each subtype. Analysis of the gene expression data in the context of the survival data revealed that high expression of NMUR1 and NCAM1 in luminal A breast cancer statistically correlated with poor prognosis, whereas the low expression levels of CDC7, KIF18A, STIL, and CKS2 in basal-like breast cancer statistically correlated with poor prognosis. Conclusions NMUR1 and NCAM1 are novel key disease-causing genes for luminal A breast cancer, and STIL is a novel key disease-causing gene for basal-like breast cancer. These genes are potential targets for clinical treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.