SUMMARY
Lateral roots (LR) are essential components of the plant edaphic interface; contributing to water and nutrient uptake, biotic and abiotic interactions, stress survival, and plant anchorage. We have identified the TETRATRICOPEPTIDE‐REPEAT THIOREDOXIN‐LIKE 3 (TTL3) gene as being related to LR emergence and later development. Loss of function of TTL3 leads to a reduced number of emerged LR due to delayed development of lateral root primordia (LRP). This trait is further enhanced in the triple mutant ttl1ttl3ttl4. TTL3 interacts with microtubules and endomembranes, and is known to participate in the brassinosteroid (BR) signaling pathway. Both ttl3 and ttl1ttl3ttl4 mutants are less sensitive to BR treatment in terms of LR formation and primary root growth. The ability of TTL3 to modulate biophysical properties of the cell wall was established under restrictive conditions of hyperosmotic stress and loss of root growth recovery, which was enhanced in ttl1ttl3ttl4. Timing and spatial distribution of TTL3 expression is consistent with its role in development of LRP before their emergence and subsequent growth of LR. TTL3 emerged as a component of the root system morphogenesis regulatory network.
Lateral roots are essential components of the plant edaphic interface, contributing to water and nutrient uptake, biotic and abiotic interactions, stress survival, and plant anchorage. We have identified the TETRATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE 3 (TTL3) being related to lateral root emergence and later development. TTL3 interacts with microtubules and potentially interconnects cytoskeletal function with the brassinosteroid signalling pathway. Loss of function of TTL3 leads to a reduced number of emerged lateral roots due to delayed development of lateral root primordia. Lateral root growth of the ttl3 mutant is less sensitive to BR treatment. Timing and spatial distribution of TTL3 expression is consistent with its role in development of lateral root primordia before their emergence and subsequent development into lateral roots. TTL3 is a novel component of the root system morphogenesis regulatory network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.