Color quantization (CQ) is an image processing task popularly used to convert true color images to palletized images for limited color display devices. To minimize the contouring artifacts introduced by the reduction of colors, a new competitive learning (CL) based scheme called the frequency sensitive self-organizing maps (FS-SOMs) is proposed to optimize the color palette design for CQ. FS-SOM harmonically blends the neighborhood adaptation of the well-known self-organizing maps (SOMs) with the neuron dependent frequency sensitive learning model, the global butterfly permutation sequence for input randomization, and the reinitialization of dead neurons to harness effective utilization of neurons. The net effect is an improvement in adaptation, a well-ordered color palette, and the alleviation of underutilization problem, which is the main cause of visually perceivable artifacts of CQ. Extensive simulations have been performed to analyze and compare the learning behavior and performance of FS-SOM against other vector quantization (VQ) algorithms. The results show that the proposed FS-SOM outperforms classical CL, Linde, Buzo, and Gray (LBG), and SOM algorithms. More importantly, FS-SOM achieves its superiority in reconstruction quality and topological ordering with a much greater robustness against variations in network parameters than the current art SOM algorithm for CQ. A most significant bit (MSB) biased encoding scheme is also introduced to reduce the number of parallel processing units. By mapping the pixel values as sign-magnitude numbers and biasing the magnitudes according to their sign bits, eight lattice points in the color space are condensed into one common point density function. Consequently, the same processing element can be used to map several color clusters and the entire FS-SOM network can be substantially scaled down without severely scarifying the quality of the displayed image. The drawback of this encoding scheme is the additional storage overhead, which can be cut down by leveraging on existing encoder in an overall lossy compression scheme.
A two-class support vector machine (SVM)-based image segmentation approach has been developed for the extraction of nasopharyngeal carcinoma (NPC) lesion from magnetic resonance (MR) images. By exploring two-class SVM, the developed method can learn the actual distribution of image data without prior knowledge and draw an optimal hyperplane for class separation, via an SVM parameters training procedure and an implicit kernel mapping. After learning, segmentation task is performed by the trained SVM classifier. The proposed technique is evaluated by 39 MR images with NPC and the results suggest that the proposed query-based approach provides an effective method for NPC extraction from MR images with high accuracy.
Automatic global beautification methods have been proposed for sketch-based interfaces, but they can lead to undesired results due to ambiguity in the user's input. To facilitate ambiguity resolution in layout beautification, we present a novel user interface for visualizing and editing inferred relationships. First, our interface provides a preview of the beautified layout with inferred constraints, without directly modifying the input layout. In this way, the user can easily keep refining beautification results by interactively repositioning and/or resizing elements in the input layout. Second, we present a gestural interface for editing automatically inferred constraints by directly interacting with the visualized constraints via simple gestures. Our efficient implementation of the beautification system provides the user instant feedback. Our user studies validate that our tool is capable of creating, editing and refining layouts of graphic elements and is significantly faster than the standard snap-dragging and command-based alignment tools.
This paper presents a simple and efficient automatic mesh segmentation algorithm that solely exploits the shape concavity information. The method locates concave creases and seams using a set of concavity-sensitive scalar fields. These fields are computed by solving a Laplacian system with a novel concavity-sensitive weighting scheme. Isolines sampled from the concavity-aware fields naturally gather at concave seams, serving as good cutting boundary candidates. In addition, the fields provide sufficient information allowing efficient evaluation of the candidate cuts. We perform a summarization of all field gradient magnitudes to define a score for each isoline and employ a score-based greedy algorithm to select the best cuts. Extensive experiments and quantitative analysis have shown that the quality of our segmentations are better than or comparable with existing state-of-the-art more complex approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.