Poly(ethylene oxide) (PEO)-based solid electrolytes are expected to be exploited in solid-state batteries with high safety. Its narrow electrochemical window, however, limits the potential for high voltage and high energy density applications. Herein the electrochemical oxidation behavior of PEO and the failure mechanisms of LiCoO 2 -PEO solid-state batteries are studied. It is found that although for pure PEO it starts to oxidize at a voltage of above 3.9 V versus Li/Li + , the decomposition products have appropriate Li + conductivity that unexpectedly form a relatively stable cathode electrolyte interphase (CEI) layer at the PEO and electrode interface. The performance degradation of the LiCoO 2 -PEO battery originates from the strong oxidizing ability of LiCoO 2 after delithiation at high voltages, which accelerates the decomposition of PEO and drives the self-oxygen-release of LiCoO 2 , leading to the unceasing growth of CEI and the destruction of the LiCoO 2 surface. When LiCoO 2 is well coated or a stable cathode LiMn 0.7 Fe 0.3 PO 4 is used, a substantially improved electrochemical performance can be achieved, with 88.6% capacity retention after 50 cycles for Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 coated LiCoO 2 and 90.3% capacity retention after 100 cycles for LiMn 0.7 Fe 0.3 PO 4 . The results suggest that, when paired with stable cathodes, the PEO-based solid polymer electrolytes could be compatible with high voltage operation.
The transition metal-catalyzed “cut and sew” transformation has recently emerged as a useful strategy for preparing complex molecular structures. After oxidative addition of a transition metal into a carbon–carbon bond, the resulting two carbon termini can be both functionalized in one step via the following migratory insertion and reductive elimination with unsaturated units, such as alkenes, alkynes, allenes, CO and polar multiple bonds. Three- or four-membered rings are often employed as reaction partners due to their high ring strains. The participation of non-strained structures generally relies on cleavage of a polar carbon–CN bond or assistance of a directing group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.