The change in the feeding system can greatly improve the growth performance of the yak (Bos grunniens), an important livestock species in the plateau region. Here, we comprehensively compared the effects of different feeding systems on the growth performance and ruminal development of yaks, and investigated the effects of ruminal microorganisms and metabolites using the 16S rRNA gene sequencing and liquid chromatograph–mass spectrometer (LC-MS) technologies. We found that compared to traditional grazing feeding, house feeding significantly improved the growth performance (such as average daily gain and net meat weight) and rumen development of the yaks. At the genus level, the abundance of Rikenellaceae RC9 Gut group, Christensenellaceae R-7 group, Lachnospiraceae NK3A20 group, Ruminococcaceae UCG-014, and Prevotellaceae UCG-003 showed significant differences and was closely related to rumen development in the two distinct feeding systems. Also, metabolomics revealed that the change in the feeding system significantly affected the concentration and metabolic pathways of the related rumen metabolites. The metabolites with significant differences were significantly enriched in purine metabolism (xanthine, adenine, inosine, etc.), tyrosine metabolism (L-tyrosine, dopaquinone, etc.), phenylalanine metabolism (dihydro-3-caumaric acid, hippuric acid, etc.), and cAMP signaling pathway [acetylcholine, (-)-epinephrine, etc.]. This study scientifically support the house fattening feeding system for yaks. Also, our results provide new insights into the composition and function of microbial communities that promote ruminal development and in general growth of the yaks.
Dmrt7 is a member of the DM domain family of genes. Dmrt7 deficiency is also a strong candidate as a cause for male cattle-yak infertility, as it is regarded as essential for male spermatogenesis, between the pachynema and diplonema stages. In our study, the coding region sequence of yak and cattle-yak Dmrt7 was cloned by molecular cloning techniques, and the sequence, conserved domains, functional sites, and secondary and tertiary structures of the Dmrt7-encoded protein were predicted and analyzed using bioinformatics methods. The coding region sequences of the Dmrt7 gene, encoding 370 amino acids, were consistent in yak and cattle-yak. The protein encoded by yak and cattle-yak Dmrt7 contains a DM domain. We detected Dmrt7 mRNA expression in testis, but not in any other tissue. Dmrt7 mRNA and protein expression was significantly higher in testis of cattle and yak than that in cattle-yak (p < 0.01). Histological analysis indicated that seminiferous tubules in male cattle-yak were highly vacuolated and contained primarily Sertoli cells and spermatogonia, while those of cattle and yak contained abundant primary spermatocytes. Male cattle-yak testis contained a significantly larger number of apoptotic cells than those in cattle and yak assessed by terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) analysis. The accumulation of SCP3-positive spermatocytes indicated the arrest of spermatogenesis at the pachynema stage in the cattle-yak. These results suggest low levels of Dmrt7 expression lead to male sterility in cattle-yak. The molecular function of Dmrt7 and the regulation of its expression warrant need to be examined in future studies.
Deleterious mutations play an important functional role, affecting trait phenotypes in ways that decrease the fitness of organisms. Estimating the frequency of occurrence and abundance has been a topic of much interest, especially in crops and livestock. The processes of domestication and breeding allow deleterious mutations to persist at high frequency, and identifying such deleterious mutations is particularly important for breed improvement. Here, we assessed genome-wide patterns of deleterious variation in 59 domestic and 13 wild yaks using genome resequencing data. Based on the intersection of results given by three methods (provean, polyphen2 and sift4g), we identified 3187 putative deleterious mutation sites affecting 2586 genes in domestic yaks and 2067 affecting 1701 genes in wild yaks. Multiple lines of evidence indicate a significant increase in the load of deleterious mutations in domesticated yaks compared to wild yaks. Private deleterious genes were found to be associated with the perception of smell and detection of chemical stimulus. We also identified 36 genes related to Mendelian genetic diseases involved in sensory perception, skeletal development and the nervous and immune systems. This study not only adds to the understanding of the genetic basis of yak domestication but also provides a rich catalog of variants that will facilitate future breeding-related research on the yak genome and on other bovid species.
Background Mammalian hair play an important role in mammals’ ability to adapt to changing climatic environments. The seasonal circulation of yak hair helps them adapt to high altitude but the regulation mechanisms of the proliferation and differentiation of hair follicles (HFs) cells during development are still unknown. Here, using time series data for transcriptome and hormone contents, we systematically analyzed the mechanism regulating the periodic expression of hair development in the yak and reviewed how different combinations of genetic pathways regulate HFs development and cycling. Results This study used high-throughput RNA sequencing to provide a detailed description of global gene expression in 15 samples from five developmental time points during the yak hair cycle. According to clustering analysis, we found that these 15 samples could be significantly grouped into three phases, which represent different developmental periods in the hair cycle. A total of 2316 genes were identified in these three consecutive developmental periods and their expression patterns could be divided into 9 clusters. In the anagen, genes involved in activating hair follicle growth are highly expressed, such as the WNT pathway, FGF pathway, and some genes related to hair follicle differentiation. In the catagen, genes that inhibit differentiation and promote hair follicle cell apoptosis are highly expressed, such as BMP4, and Wise. In the telogen, genes that inhibit hair follicle activity are highly expressed, such as DKK1 and BMP1. Through co-expression analysis, we revealed a number of modular hub genes highly associated with hormones, such as SLF2, BOP1 and DPP8. They may play unique roles in hormonal regulation of events associated with the hair cycle. Conclusions Our results revealed the expression pattern and molecular mechanisms of the seasonal hair cycle in the yak. The findings will be valuable in further understanding the alpine adaptation mechanism in the yak, which is important in order to make full use of yak hair resources and promote the economic development of pastoral plateau areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.