Drosophila Dscam1 (Down Syndrome Cell Adhesion Molecules) and vertebrate clustered protocadherins (Pcdhs) are two classic examples of the extraordinary isoform diversity from a single genomic locus. Dscam1 encodes 38,016 distinct isoforms via mutually exclusive splicing in D. melanogaster, while the vertebrate clustered Pcdhs utilize alternative promoters to generate isoform diversity. Here we reveal a shortened Dscam gene family with tandemly arrayed 5′ cassettes in Chelicerata. These cassette repeats generally comprise two or four exons, corresponding to variable Immunoglobulin 7 (Ig7) or Ig7–8 domains of Drosophila Dscam1. Furthermore, extraordinary isoform diversity has been generated through a combination of alternating promoter and alternative splicing. These sDscams have a high sequence similarity with Drosophila Dscam1, and share striking organizational resemblance to the 5′ variable regions of vertebrate clustered Pcdhs. Hence, our findings have important implications for understanding the functional similarities between Drosophila Dscam1 and vertebrate Pcdhs, and may provide further mechanistic insights into the regulation of isoform diversity.
BackgroundThe immunoglobulin (Ig) superfamily receptor Down syndrome cell adhesion molecule (Dscam) gene can generate tens of thousands of isoforms via alternative splicing, which is essential for both nervous and immune systems in insects. However, further information is required to develop a comprehensive view of Dscam diversification across the broad spectrum of Chelicerata clades, a basal branch of arthropods and the second largest group of terrestrial animals.ResultsIn this study, a genome-wide comprehensive analysis of Dscam genes across Chelicerata species revealed a burst of nonclassical Dscams, categorised into four types—mDscam, sDscamα, sDscamβ, and sDscamγ—based on their size and structure. Although the mDscam gene class includes the highest number of Dscam genes, the sDscam genes utilise alternative promoters to expand protein diversity. Furthermore, we indicated that the 5′ cassette duplicate is inversely correlated with the sDscam gene duplicate. We showed differential and sDscam- biased expression of nonclassical Dscam isoforms. Thus, the Dscam isoform repertoire across Chelicerata is entirely dominated by the number and expression levels of nonclassical Dscams. Taken together, these data show that Chelicerata evolved a large conserved and lineage-specific repertoire of nonclassical Dscams.ConclusionsThis study showed that arthropods have a large diversified Chelicerata-specific repertoire of nonclassical Dscam isoforms, which are structurally and mechanistically distinct from those of insects. These findings provide a global framework for the evolution of Dscam diversity in arthropods and offer mechanistic insights into the diversification of the clade-specific Ig superfamily repertoire.Electronic supplementary materialThe online version of this article (10.1186/s12864-017-4420-0) contains supplementary material, which is available to authorized users.
Background: Human angiostrongyliasis is an emerging food-borne public health problem, with the number of cases increasing worldwide, especially in mainland China. Angiostrongylus cantonensis is the causative agent of this severe disease. However, little is known about the genetics and basic biology of A. cantonensis.
Drosophila melanogaster Dscam1
encodes 38,016 isoforms via mutually exclusive splicing; however, the regulatory mechanism behind this is not fully understood. Here, we found a set of hidden RNA secondary structures that balance the stochastic choice of
Dscam1
splice variants (designated balancer RNA secondary structures). In vivo mutational analyses revealed the dual function of these balancer interactions in driving the stochastic choice of splice variants, through enhancement of the inclusion of distal exon 6s by cooperating with docking site–selector pairing to form a stronger multidomain pre-mRNA structure and through simultaneous repression of the inclusion of proximal exon 6s by antagonizing their docking site–selector pairings. Thus, we provide an elegant molecular model based on competition and cooperation between two sets of docking site–selector and balancer pairings, which counteracts the “first-come, first-served” principle. Our findings provide conceptual and mechanistic insight into the dynamics and functions of long-range RNA secondary structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.