Objective
The aim of this study was to select the candidate genes affecting meat quality and preliminarily explore the related molecular mechanisms in the Mashen pig.
Methods
The present study explored genetic factors affecting meat quality in the Mashen pig using RNA sequencing (RNA-Seq). We sequenced the transcriptomes of 180-day-old Mashen and Large White pigs using longissimus dorsi to select differentially expressed genes (DEGs).
Results
The results indicated that a total of 425 genes were differentially expressed between Mashen and Large White pigs. A gene ontology enrichment analysis revealed that DEGs were mainly enriched for biological processes associated with metabolism and muscle development, while a Kyoto encyclopedia of genes and genomes analysis showed that DEGs mainly participated in signaling pathways associated with amino acid metabolism, fatty acid metabolism, and skeletal muscle differentiation. A MCODE analysis of the protein-protein interaction network indicated that the four identified subsets of genes were mainly associated with translational initiation, skeletal muscle differentiation, amino acid metabolism, and oxidative phosphorylation pathways.
Conclusion
Based on the analysis results, we selected glutamic-oxaloacetic transaminase 1, malate dehydrogenase 1, pyruvate dehydrogenase 1, pyruvate dehydrogenase kinase 4, and activator protein-1 as candidate genes affecting meat quality in pigs. A discussion of the related molecular mechanisms is provided to offer a theoretical basis for future studies on the improvement of meat quality in pigs.
Being in a confined environment causes chronic stress in gestating sows, which is detrimental for sow health, welfare and, consequently, offspring physiology. This study assessed the health and welfare of gestating sows housed in a group housing system compared to individual gestation stalls. After pregnancy was confirmed, experimental sows were divided randomly into two groups: the group housing system (GS), with the electronic sow feeding (ESF) system; or individual stall (IS). The behavior of sows housed in the GS or IS was then compared; throughout pregnancy, GS sows displayed more exploratory behavior, less vacuum chewing, and less sitting behavior (p < 0.05). IS sows showed higher stress hormone levels than GS sows. In particular, at 41 days of gestation, the concentration of the adrenocorticotropic hormone (ACTH) and adrenaline (A) in IS sows was significantly higher than that of GS sows, and the A level of IS sows remained significantly higher at 71 days of gestation (p < 0.01). The lipopolysaccharide (LPS) test was carried out in the weaned piglets of the studied sows. Compared with the offspring of gestating sows housed in GS (PG) or IS (PS), PG experienced a shorter period of high temperature and showed a quicker return to the normal state (p < 0.05). Additionally, their lower levels of stress hormone (p < 0.01) suggest that PG did not suffer from as much stress as PS. These findings suggested that gestating sows housed in GS were more able to carry out their natural behaviors and, therefore, had lower levels of stress and improved welfare. In addition, PG also showed better disease resistance and resilience. These results will provide a research basis for the welfare and breeding of gestating sows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.