With the rise of Big Data, there has been a significant effort in increasing compute power through GPUs, TPUs, and heterogeneous architectures. As a result, many applications are memory bound, i.e., they are bottlenecked by the movement of data from main memory to compute units. One way to address this issue is through data prefetching, which relies on accurate prediction of memory accesses. While recent deep learning models have performed well on sequence prediction problems, they are far too heavy in terms of model size and inference latency to be practical for data prefetching. Here, we propose extremely compact LSTM models that can predict the next memory access with high accuracy. Prior LSTM based work on access prediction has used orders of magnitude more parameters and developed one model for each application (trace). While one (specialized) model per application can result in more accuracy, it is not a scalable approach. In contrast, our models can predict for a class of applications by trading off specialization at the cost of few retraining steps at runtime, for a more generalizable compact meta-model. Our experiments on 13 benchmark applications demonstrate that three compact meta-models can obtain accuracy close to specialized models using few batches of retraining for majority of the applications.
With the rise of Big Data, there has been a significant effort in increasing compute power through GPUs, TPUs, and heterogeneous architectures. As a result, many applications are memory bound, i.e., they are bottlenecked by the movement of data from main memory to compute units. One way to address this issue is through data prefetching, which relies on accurate prediction of memory accesses. While recent deep learning models have performed well on sequence prediction problems, they are far too heavy in terms of model size and inference latency to be practical for data prefetching. Here, we propose clustering-driven compact LSTM models that can predict the next memory access with high accuracy. We introduce a novel clustering approach called Delegated model that can reliably cluster the applications. For each cluster, we train a compact meta-LSTM model that can quickly adapt to any application in the cluster. Prior LSTM-based work on access prediction has used orders of magnitude more parameters and developed one model for each application (trace). While one (specialized) model per application can result in more accuracy, it is not a scalable approach. In contrast, our models can predict for a class of applications by trading off specialization at the cost of few retraining steps at runtime, for a more generalizable compact meta-model. Our experiments on 13 benchmark applications demonstrate that clustering-driven ensemble compact meta-models can obtain accuracy close to specialized models using few batches of retraining for majority of the applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.