Thin superconducting films form a unique platform for geometrically confined, strongly interacting electrons. They allow an inherent competition between disorder and superconductivity, which in turn enables the intriguing superconducting-to-insulating transition and is believed to facilitate the comprehension of high-T c superconductivity. Furthermore, understanding thin film superconductivity is technologically essential, e.g., for photodetectors and quantum computers. Consequently, the absence of established universal relationships between critical temperature (T c ), film thickness (d), and sheet resistance (R s ) hinders both our understanding of the onset of the superconductivity and the development of miniaturized superconducting devices. We report that in thin films, superconductivity scales as dT c (R s ). We demonstrated this scaling by analyzing the data published over the past 46 years for different materials (and facilitated this database for further analysis). Moreover, we experimentally confirmed the discovered scaling for NbN films, quantified it with a power law, explored its possible origin, and demonstrated its usefulness for nanometer-length-scale superconducting film-based devices. Relationships between low-temperature and normal-state properties are crucial for understanding superconductivity. For instance, the Bardeen-Cooper-Schrieffer theory (BCS) successfully associates the normal-to-superconducting transition temperature, T c , with material parameters, such as the Debye temperature ( D ) and the density of states at the Fermi level [N (0)]. Hence, the BCS model allows us to infer superconducting characteristics (i.e., T c ) from properties measured at higher temperatures [1]. In the BCS framework, superconductivity occurs when attractive phonon-mediated electron-electron interactions overcome the Coulomb repulsion, giving rise to paired electrons (Cooper pairs) with a binding energy gap:. Moreover, within a superconductor, all Cooper pairs are coupled, giving rise to a collective electron interaction. Such a collective state is described by a complex global order parameter with real amplitude ( ) and phase (ϕ): = e iϕ .Because superconductivity relies on a collective electron behavior, the onset of superconductivity occurs when the number of participating electrons is just enough to be considered collective, i.e., at the nanoscale [2-5]. Thus, it is known that the superconductivity-disorder interplay varies in thin films and is effectively tuned with the film thickness (d) or with the disorder in the system, which is represented by sheet resistance of the film at the normal state (R s ) [6][7][8][9][10]. The mechanism of superconductivity in thin films has been investigated since the 1930s [6] increase in T c with decreasing thickness in aluminum films in a study that pioneered the currently ongoing research of thin superconducting films. This enhancement of T c , which is still not completely understood, was later confirmed by Strongin et al. [12], who also reported the more common be...
Enhanced piezoresponse force microscopy was used to study flux closure vortexlike structures of 90° ferroelastic domains at the nanoscale in thin ferroelectric lead zirconium titanate (PZT) films. Using an external electric field, a vortexlike structure was induced far away from a grain boundary, indicating that physical edges are not necessary for nucleation contrary to previous suggestions. We demonstrate two different configurations of vortexlike structures, one of which has not been observed before. The stability of these structures is found to be size dependent, supporting previous predictions.
Single-photon detectors and nanoscale superconducting devices are two major candidates for realizing quantum technologies. Superconducting-nanowire single-photon detectors (SNSPDs) comprise these two solid-state and optic aspects enabling high-rate (1.3 Gb s −1 ) quantum key distribution over long distances (>400 km), long-range quantum communication (>1200 km), as well as space communication (239 000 miles). The attractiveness of SNSPDs stems from competitive performance in the four single-photon relevant characteristics at wavelengths ranges from UV to the mid-IR: high detection efficiency, low false-signal rate, low uncertainty in photon time arrival, and fast reset time. However, to date, these characteristics cannot be optimized simultaneously. In this review, the mechanisms that govern these four characteristics are presented, and it is demonstrated how they are affected by material properties and device design as well as by the operating conditions, allowing aware optimization of SNSPDs. Based on the evolution in the existing literature and state of the art, it is proposed how to choose or design the material and device for optimizing SNSPD performance, while possible future opportunities in the SNSPD technology are also highlighted.
Mechanical displacement in commonly used piezoelectric materials is typically restricted to linear or biaxial in nature and to a few percent of the material dimensions. Here, we show that free-standing BaTiO3 membranes exhibit non-conventional electromechanical coupling. Under an external electric field, these superelastic membranes undergo controllable and reversible "sushi-rolling-like" 180° folding-unfolding cycles. This crease-free folding is mediated by charged ferroelectric domains, leading to a giant > 3.8 and 4.6 µm displacements for a 30-nm thick membrane at room temperature and 60 °C, respectively. Further increasing the electric field above the coercive value changes the fold curvature, hence augmenting the effective piezoresponse. Finally, it is found that the membranes fold with increasing temperature followed by complete immobility of the membrane above the Curie temperature, allowing us to model the ferroelectric-domain origin of the effect.The electromechanical power conversion of piezoelectrics is the basis for a broad range of sensing, actuating, and communication technologies, including ultrasound imaging and cellular phones. 1-3 Recent interest in electromechanical energy harvesting 4,5 as well as in flexible electronics for wearable devices, 6,7 nano motors, 8 and medical applications 9-11 raises a need for flexible piezoelectric materials and devices. Modern applications of piezoelectrics hinge on thin films, 12-14 however, the substrate in such geometries is typically rigid, preventing the development of flexible devices. Flexible piezoelectric devices are therefore typically based on either nanowires 4 or on thin-film systems, but with substrates that have been designed especially for such applications. 15,16 Most piezoelectric applications rely on lead-based materials, which exhibit strong piezoelectric coefficients. Nevertheless, the toxicity of these materials is undesirable for environmental considerations, while it also disqualifies them for medical or wearable applications. Likewise, traditional thin-film geometries limit the electromechanical excitation modes. That is, usually, uniaxial electric field results in either parallel or perpendicular uniaxial or biaxial mechanical deformation (or vice versa).Nevertheless, the interest in flexible-electronic technologies raises a need for advanced electromechanical excitation modes, e.g., for motorized devices, including microscale aerial vehicles. 17 Substrate removal for piezoelectric films or membranes augments their functional properties, 18-21 mainly thanks to mechanically-induced ferroic-domain reorganization. 22 However, the preparation of completely stand-alone substrate-free films has remained a challenge. Lu et al. 23 demonstrated lately a general method to prepare oxide materials in the form of membranes, i.e., continuous free-standing thin films with no substrate. More recently, Dong et al. 24 used this method to process BaTiO3 membranes, which is a well-known lead-free piezoelectric and ferroelectric material. This work show...
We used enhanced piezo-response force microscopy (E-PFM) to investigate both ferroelastic and ferroelectric nanodomains in thin films of the simple multi-ferroic system PbZr(0.3)Ti(0.7)O(3) (PZT). We show how the grains are organized into a new type of elastic domain bundles of the well-known periodic elastic twins. Here we present these bundle domains and discuss their stability and origin. Moreover, we show that they can arrange in such a way as to release strain in a more effective way than simple twinning. Finally, we show that these bundle domains can arrange to form the macroscopic ferroelectric domains that constitute the basis of ferroelectric-based memory devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.