The introduction of a new pricing mechanism, the increasing-block tariff (IBT), will not only affect electricity bills for residents, but also lead to a change in residential electricity consumption behaviours. Understanding these consumption patterns will help create more accurate load forecasting and increase the efficiency of the IBT. This study proposes an innovative clustering-based approach for short-term load forecasting under the IBT in China. The new approach initially partitions households into homogeneous groups each of which has distinctive consumption patterns under the IBT, each consumer segment can then select the most appropriate model for load forecasting, and the predicted load demands of different clusters are aggregated to derive the total usage. In particular, the IBT-related attributes are newly introduced into the clustering analysis. The utility and effectiveness of the proposed model is confirmed through a realistic dataset that contains the daily household-level consumption data of 533 households from April 2014 to February 2015. Consequently, the households are classified into five clusters with distinctive consumption patterns, including low-demand and insensitivity to high temperature (Cluster 1), ordinary users and sensitivity to high temperature (Cluster 2), ordinary users and sensitivity to the IBT (Cluster 3), high-demand consumers and sensitivity to high temperature (Cluster 4), and luxury consumers (Cluster 5). In addition, the obtained experimental results demonstrate that the proposed approach can not only achieve better prediction accuracy (e.g., the mean absolute
In this article, a robust [Formula: see text] observer-based static state-feedback controller is designed for the path following of autonomous ground vehicles. The Takagi–Sugeno fuzzy modeling technique is used for modeling of vehicle dynamics with varying longitudinal velocity first. Then considering the high cost of direct lateral velocity measurement, an observer is designed to estimate the value of lateral velocity. Meanwhile, a robust controller is proposed to deal with the parameter uncertainties and external disturbances simultaneously, including the variation of the tire-cornering stiffness of both front and rear tires. Afterward, the condition of designing such an observer-based controller is transformed into the feasible problem of linear matrix inequalities. Numerical simulations using a high-fidelity and full vehicle model are performed based on a Carsim–Simulink joint platform. Simulation results under different conditions and comparison with other controller show that the proposed controller is effective irrespective of the variation in the road condition, the change in the vehicle longitudinal velocity and the external disturbances.
A robust [Formula: see text] observer-based static state-feedback controller is designed for the path following of autonomous ground vehicles in this paper. Considering the lateral velocity of vehicle is usually difficult to measure, an observer is designed to estimate the value of lateral velocity first. Then, a robust controller is proposed to cope with the modeling uncertainty and disturbance, such as the variation of road coefficient and lateral disturbance. Numerical simulations using a high-fidelity and full-vehicle model based on a CarSim–Simulink joint platform have verified the effectiveness of the proposed approach.
Non-linear system control has always been a difficult point for vehicle stabilization. To improve the vehicle handling performance, a comprehensive active-steering control method is proposed and derived. Different from traditional strategy, this new controller is based on a piecewise tyre modelling ideology combined with feedback linearization controlling method. In the linear region of wheel-terrain contact, vehicle dynamic system turns to be a linear system, an optimal control is designed for the sake of rapid response in tracking desired values. In the non-linear region, where the controlling difficulty always lies in, the tyre lateral force is described by a new polynomial formula model, which is simpler than magic formula model and more accurate than linear model. This new tyre modelling ideology ensures the feasibility of feedback linearization method in non-linear system control. To verify the proposed controller, a numerical seven-degrees-of-freedom vehicle model is built and validated by standard input simulation. Then, simulation under limit conditions, including high friction case and low friction case, are conducted and results are presented and discussed. Compared with optimal controller and free-control method, comprehensive controller has a much more desirable applicability in both cases and greatly improves the vehicle handling performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.