With outbreak of the novel coronavirus disease (COVID-19), immediate prevention and control actions were imposed in China. Here, we conducted a timely investigation on the changes of air quality, associated health burden and economic loss during the COVID-19 pandemic (January 1 to May 2, 2020). We found an overall improvement of air quality by analyzing data from 31 provincial cities, due to varying degrees of NO 2 , PM 2.5 , PM 10 and CO reductions outweighing the significant O 3 increase. Such improvement corresponds to a total avoided premature mortality of 9410 (7273–11,144) in the 31 cities by comparing the health burdens between 2019 and 2020. NO 2 reduction was the largest contributor (55%) to this health benefit, far exceeding PM 2.5 (10.9%) and PM 10 (23.9%). O 3 instead was the only negative factor among six pollutants. The period with the largest daily avoided deaths was rather not the period with strict lockdown but that during February 25 to March 31, due to largest reduction of NO 2 and smallest increase of O 3 . Southwest, Central and East China were regions with relatively high daily avoided deaths, while for some cities in Northeast China, the air pollution was even worse, therefore could cause more deaths than 2019. Correspondingly, the avoided health economic loss attributable to air quality improvement was 19.4 (15.0–23.0) billion. Its distribution was generally similar to results of health burden, except that due to regional differences in willingness to pay to reduce risks of premature deaths, East China became the region with largest daily avoided economic loss. Our results here quantitatively assess the effects of short-term control measures on changes of air quality as well as its associated health and economic burden, and such information is beneficial to future air pollution control.
Particulate matter (PM) air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) over Nanjing were analyzed using hourly and daily averaged PM2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER) model was applied to assess premature mortality, years of life lost (YLL) attributable to PM2.5, and mortality benefits due to PM2.5 reductions. The concentrations of PM2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF), stroke was the major cause of death, followed by ischemic heart disease (IHD), lung cancer (LC) and chronic obstructive pulmonary disease (COPD). The estimated total deaths in Nanjing due to PM2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM2.5 concentrations meet the World Health Organization (WHO) Air Quality Guidelines (AQG) of 10 μg/m3, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits.
The major organic compositions from biomass burning emissions are monosaccharide derivatives from the breakdown of cellulose, generally accompanied by small amounts of straight-chain, aliphatic, oxygenated compounds, and terpenoids from vegetation waxes, resins/gums, and other biopolymers. Levoglucosan from cellulose can be utilized as a specific or general indicator for biomass combustion emissions in aerosol samples. There are other important compounds, such as dehydroabietic acid, syringaldehyde, syringic acid, vanillic acid, vanillin, homovanillic acid, 4-hydroxybenzoic acid, and p-coumaric acid, which are additional key indicators of biomass burning. In this review, we will address these tracers from different types of biomass burning and the methods used to identify the sources in ambient aerosols. First, the methods of inferring biomass burning types by the ratio method are summarized, including levoglucosan/mannose, syringic acid/vanillic acid, levolgucosan/K+, vanillic acid/4-hydroxybenzoic acid, levoglucosan/OC, and levoglucosan/EC to infer the sources of biomass burning, such as crop residual burning, wheat burning, leaf burning, peatland fire, and forest fire in Asia. Second, we present the source tracer ratio methods that determine the biomass combustion types and their contributions. Finally, we introduce the PCA (Principal component analysis) and PMF (Positive matrix factor) methods to identify the type of biomass burning and its contributions according to emission factors of different species in various plants such as softwood, hardwood, and grass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.