Outer membrane vesicles (OMVs) have proven to be highly immunogenic and induced an immune response against bacterial infection in human clinics and animal models. We sought to investigate whether engineered OMVs can be a feasible antigen-delivery platform for efficiently inducing specific antibody responses. In this study, Omp22 (an outer membrane protein of A. baumannii) was displayed on E. coli DH5α-derived OMVs (Omp22-OMVs) using recombinant gene technology. The morphological features of Omp22-OMVs were similar to those of wild-type OMVs (wtOMVs). Immunization with Omp22-OMVs induced high titers of Omp22-specific antibodies. In a murine sepsis model, Omp22-OMV immunization significantly protected mice from lethal challenge with a clinically isolated A. baumannii strain, which was evidenced by the increased survival rate of the mice, the reduced bacterial burdens in the lung, spleen, liver, kidney, and blood, and the suppressed serum levels of inflammatory cytokines. In vitro opsonophagocytosis assays showed that antiserum collected from Omp22-OMV-immunized mice had bactericidal activity against clinical isolates, which was partly specific antibody-dependent. These results strongly indicated that engineered OMVs could display a whole heterologous protein (~22 kDa) on the surface and effectively induce specific antibody responses, and thus OMVs have the potential to be a feasible vaccine platform.
Background
Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. The inhibition of epidermal growth factor receptor (EGFR) signaling by tyrosine kinase inhibitors or monoclonal antibodies plays a key role in NSCLC treatment. Unfortunately, these treatment strategies are limited by eventual resistance and cell lines with differential EGFR status. Therefore, new therapeutic strategies for NSCLC are urgently required.
Methods
To improve the stability and absorption of (−)-epigallocatechin-3-gallate (EGCG), we synthesized a series of EGCG derivatives. The antitumor activities of EGCG derivatives with or without cisplatin were investigated in vitro and vivo. Cell proliferation, cell cycle distribution and apoptosis were measured in NSCLC cell lines and in vivo in a NCI-H441 xenograft model.
Results
We found that the EGCG derivatives inhibited cell viability and colony formation, caused cell cycle redistribution, and induced apoptosis. More importantly, the combination of the EGCG derivative and cisplatin led to increased growth inhibition, caused cell cycle redistribution, and enhanced the apoptosis rate compared to either compound alone. Consistent with the experiments in vitro, EGCG derivatives plus cisplatin significantly reduced tumor growth.
Conclusions
The combination treatment was found to inhibit the EGFR signaling pathway and decrease the expression of p-EGFR, p-AKT, and p-ERK in vitro and vivo. Our results suggest that compound 3 is a novel potential compound for NSCLC patients.
Cross-talk by pattern recognition receptors may facilitate the maturation of dendritic cells and fine tune the immune response. Thus, the inclusion of ligands agonistic to multiple receptors in a vaccine formula may be an effective strategy to elicit robust antitumor cellular immunity. We tested the adjuvant effects and possible synergy of CpG (CpG oligodeoxynucleotide), Poly I:C (polyinosinic-polycytidylic acid) and the cationic peptide Cramp (cathelicidin-related antimicrobial peptide) formulated in a DOTAP (1,2-dioleoyl-3-trimethylammonium-propane) liposomal HPV E7 epitope vaccine on a TC-1 grafted mouse model. The vaccine formulations were administered both preventively and therapeutically. Based on our results, both CpG and Poly I:C-adjuvanted vaccines abolished tumor development in a preventive trial and significantly suppressed tumor growth in a therapeutic trial. Increased interferon (IFN)-γ expression and potent memory T cells in splenocytes as well as elevated CD8+IFN-γ+ cells in both spleen and tumor tissue indicated an elevated E7-specific cellular immune response. Although synergistic effects were detected between CpG and Poly I:C, their adjuvant effects were not enhanced further when combined with Cramp. Because the enhancement of tumor antigen-specific cellular immune responses is vital for the clearance of infected and cancerous cells, our results contribute a potential adjuvant combination for cancer vaccines.
Therapeutic vaccine appears to be a potential approach for the treatment of human papillomavirus (HPV)-associated tumours, but its efficacy can be dampened by immunosuppressive factors such as transforming growth factor (TGF)-β1. We sought to investigate whether active immunity against TGF-β1 enhances the anti-tumour immunity elicited by an HPV16 E7-specific vaccine that we developed previously. In this study, virus-like particles of hepatitis B virus core antigen were used as vaccine carriers to deliver either TGF-β1 B cell epitopes or E7 cytotoxic T-lymphocyte epitope. The combination of preventive immunization against TGF-β1 and therapeutic immunization with the E7 vaccine significantly reduced the growth of grafted TC-1 tumours in C57 mice, showing better efficacy than immunization with only one of the vaccines. The improved efficacy of combined immunization is evidenced by elevated IFN-γ and decreased IL-4 and TGF-β1 levels in cultured splenocytes, increased E7-specific IFN-γ-expressing splenocytes, and increased numbers of CD4IFN-γ and CD8IFN-γ cells and decreased numbers of Treg (CD4Foxp3) cells in the spleen and tumours. The results strongly indicate that targeting TGF-β1 through active immunization might be a potent approach to enhancing antigen-specific therapeutic vaccine-induced anti-tumour immune efficacy and providing a combined strategy for effective cancer immunotherapy.
Cathelicidin has been reported to be multifunctional. The current study aimed to investigate the influences of exogenous cathelicidin-related antimicrobial peptide (CRAMP) on inflammatory responses in different disease models. In OVA-induced allergic airway inflammation, CRAMP significantly enhanced the infiltration of inflammatory cells and accumulation of proinflammatory Th2 cytokine IL-13 and IL-33 in bronchial alveolar lavage fluid (BALF), exacerbated lung tissue inflammation and airway goblet cell hyperplasia, and elevated OVA-specific IgE level in serum. In oxazolone-induced intestinal colitis, the expression levels of CRAMP and its receptor FPR2 significantly increased in comparison with those of TNBS-induced mice, vesicle and normal controls. Exogenous CRAMP significantly prevented the development of ulcerative colitis, evidenced by improved body weight regain, decreased colons weight/length ratio, elevated epithelial integrity, and ameliorated colon tissue inflammation. In addition, pro-inflammatory cytokines TNF-α, IL-1β, IL-4 and IL-13, as well as chemokines CXCL2 and CXCL5 for neutrophils recruitment were significantly decreased in CRAMP-treated mice, and epithelial repair-related factors MUC2 and Claudin1 were increased, determined by real time-PCR and ELISAs. The results indicated that although CRAMP has pro-inflammatory effects in airway, local application of exogenous CRAMP might be a potential approach for the treatment of ulcerative colitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.