Over the past few decades, antibiotics have been considered emerging pollutants due to their persistence in aquatic ecosystems. Even at low concentrations, these pollutants contribute to the phenomenon of antibiotic resistance, while their degradation is still a longstanding challenge for wastewater treatment. In the present literature survey, we review the recent advances in synergistic techniques for antibiotic degradation in wastewater that combine either ultrasound (US) or hydrodynamic cavitation (HC) and oxidative, photo-catalytic, and enzymatic strategies. The degradation of sulfadiazine by HC/persulfate (PS)/H2O2/α-Fe2O3, US/PS/Fe0, and sono-photocatalysis with MgO@CNT nanocomposites processes; the degradation of tetracycline by US/H2O2/Fe3O4, US/O3/goethite, and HC/photocatalysis with TiO2 (P25) sono-photocatalysis with rGO/CdWO4 protocols; and the degradation of amoxicillin by US/Oxone®/Co2+ are discussed. In general, a higher efficiency of antibiotics removal and a faster structure degradation rate are reported under US or HC conditions as compared with the corresponding silent conditions. However, the removal of ciprofloxacin hydrochloride reached only 51% with US-assisted laccase-catalysis, though it was higher than those using US or enzymatic treatment alone. Moreover, a COD removal higher than 85% in several effluents of the pharmaceutical industry (500–7500 mg/L COD) was achieved by the US/O3/CuO process.
This study aimed to improve the adsorption capacity of activated carbon (AC) towards naphthalene (NAP) in aqueous solutions. Starch-based AC (SAC) and pulverized coal-based AC (PCAC) were prepared in a one-pot procedure by activation with oleic acid and KOH under microwave heating. Brunauer–Emmett–Teller (BET) specific surface areas reached 725.0 and 912.9 m2/g for in situ modified SAC (O-SAC1) and PCAC (O-PCAC1), respectively. π–π bond, H-bond, and hydrophobic effects were directly involved in the NAP adsorption process. Batch adsorption data were well fitted by pseudo-second order kinetics and the Freundlich isotherm model. As compared to ACs prepared with only KOH activation, NAP adsorption capacities of PCAC and SAC prepared by the one-pot method increased by 16.9% and 13.7%, respectively. Influences of varying factors were investigated in column adsorption of NAP using O-SAC1 and O-PCAC1. Based on breakthrough curves analysis, the larger column height (H), lower flow rate (Q0), and lower initial concentration (C0) resulted in the longer breakthrough and exhaustion times in both cases. Specifically, we concluded that O-PCAC1 exhibits better adsorption capacity than O-SAC1 in the given conditions. The optimized operating parameters were 1 cm (H), 1 mL/min (Q0) and 30 mg/L (C0). Finally, column adsorption data could be well fitted by the Thomas model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.