Metabolically stable anaerobic cultures obtained by enrichment with 5-bromovanillin, 5-chlorovanillin, catechin, and phloroglucinol were used to study dechlorination of chlorocatechols. A high degree of specificity in dechlorination was observed, and some chlorocatechols were appreciably more resistant to dechlorination than others: only 3,5-dichlorocatechol, 4,5-dichlorocatechol, 3,4,5-trichlorocatechol, and tetrachlorocatechol were dechlorinated, and not all of them were dechlorinated by the same consortium. 3,5-Dichlorocatechol produced 3-chlorocatechol, 4,5-dichlorocatechol produced 4-chlorocatechol, and 3,4,5-trichlorocatechol produced either 3,5-dichlorocatechol or 3,4-dichlorocatechol; tetrachlorocatechol produced only 3,4,6-trichlorocatechol. Incubation of uncontaminated sediments without additional carbon sources brought about dechlorination of 3,4,5-trichlorocatechol to 3,5-dichlorocatechol. 0-demethylation of chloroguaiacols was generally accomplished by enrichment cultures, except that catechin enrichment was unable to 0-demethylate tetrachloroguaiacol. None of the enrichments dechlorinated any of the polychlorinated phenols examined. The results suggested that dechlorination was not dependent on enrichment with or growth at the expense of chlorinated compounds and that it would be premature to formulate general rules for the structural dependence of the dechlorination reaction.