Animals and higher plants express endogenous peptide antibiotics called defensins. These small cysteine-rich peptides are active against bacteria, fungi and viruses. Here we describe plectasin-the first defensin to be isolated from a fungus, the saprophytic ascomycete Pseudoplectania nigrella. Plectasin has primary, secondary and tertiary structures that closely resemble those of defensins found in spiders, scorpions, dragonflies and mussels. Recombinant plectasin was produced at a very high, and commercially viable, yield and purity. In vitro, the recombinant peptide was especially active against Streptococcus pneumoniae, including strains resistant to conventional antibiotics. Plectasin showed extremely low toxicity in mice, and cured them of experimental peritonitis and pneumonia caused by S. pneumoniae as efficaciously as vancomycin and penicillin. These findings identify fungi as a novel source of antimicrobial defensins, and show the therapeutic potential of plectasin. They also suggest that the defensins of insects, molluscs and fungi arose from a common ancestral gene.
Host defense peptides such as defensins are components of innate immunity and have retained antibiotic activity throughout evolution. Their activity is thought to be due to amphipathic structures, which enable binding and disruption of microbial cytoplasmic membranes. Contrary to this, we show that plectasin, a fungal defensin, acts by directly binding the bacterial cell-wall precursor Lipid II. A wide range of genetic and biochemical approaches identify cell-wall biosynthesis as the pathway targeted by plectasin. In vitro assays for cell-wall synthesis identified Lipid II as the specific cellular target. Consistently, binding studies confirmed the formation of an equimolar stoichiometric complex between Lipid II and plectasin. Furthermore, key residues in plectasin involved in complex formation were identified using nuclear magnetic resonance spectroscopy and computational modeling.
TransCon CNP is a C-type natriuretic peptide (CNP-38) conjugated via a cleavable linker to a polyethylene glycol carrier molecule, designed to provide sustained systemic CNP levels upon weekly subcutaneous administration. TransCon CNP is in clinical development for the treatment of comorbidities associated with achondroplasia. In both mice and cynomolgus monkeys, sustained exposure to CNP via TransCon CNP was more efficacious in stimulating bone growth than intermittent CNP exposure. TransCon CNP was well tolerated with no adverse cardiovascular effects observed at exposure levels exceeding the expected clinical therapeutic exposure. At equivalent dose levels, reductions in blood pressure and/or an increase in heart rate were seen following single subcutaneous injections of the unconjugated CNP-38 molecule or a daily CNP-39 molecule (same amino acid sequence as Vosoritide, USAN:INN). The half-life of the daily CNP-39 molecule in cynomolgus monkey was estimated to be 20 minutes, compared with 90 hours for CNP-38, released from TransCon CNP. C max for the CNP-39 molecule (20 mg/kg) was approximately 100-fold higher, compared with the peak CNP level associated with administration of 100 mg/kg CNP as TransCon CNP. Furthermore, CNP exposure for the daily CNP-39 molecule was only evident for up to 2 hours postdose (lower limit of quantification 37 pmol/l), whereas TransCon CNP gave rise to systemic exposure to CNP-38 for at least 7 days postdose. The prolonged CNP exposure and associated hemodynamically safe peak serum concentrations associated with TransCon CNP administration are suggested to improve efficacy, compared with short-lived CNP molecules, due to better therapeutic drug coverage and decreased risk of hypotension. SIGNIFICANCE STATEMENT The hormone C-type natriuretic peptide (CNP) is in clinical development for the treatment of comorbidities associated with achondroplasia, the most common form of human dwarfism. The TransCon Technology was used to design TransCon CNP, a prodrug that slowly releases active CNP in the body over several days. Preclinical data show great promise for TransCon CNP to be an effective and well-tolerated drug that provides sustained levels of CNP in a convenient once-weekly dose, while avoiding high systemic CNP bolus concentrations that can induce cardiovascular side effects.
BackgroundHost defense peptides (HDPs), or antimicrobial peptides (AMPs), are important components of the innate immune system that bacterial pathogens must overcome to establish an infection and HDPs have been suggested as novel antimicrobial therapeutics in treatment of infectious diseases. Hence it is important to determine the natural variation in susceptibility to HDPs to ensure a successful use in clinical treatment regimes.ResultsStrains of two human bacterial pathogens, Listeria monocytogenes and Staphylococcus aureus, were selected to cover a wide range of origin, sub-type, and phenotypic behavior. Strains within each species were equally sensitive to HDPs and oxidative stress representing important components of the innate immune defense system. Four non-human peptides (protamine, plectasin, novicidin, and novispirin G10) were similar in activity profile (MIC value spectrum) to the human β-defensin 3 (HBD-3). All strains were inhibited by concentrations of hydrogen peroxide between 0.1% – 1.0%. Sub-selections of both species differed in expression of several virulence-related factors and in their ability to survive in human whole blood and kill the nematode virulence model Caenorhabditis elegans. For L. monocytogenes, proliferation in whole blood was paralleled by high invasion in Caco-2 cells and fast killing of C. elegans, however, no such pattern in phenotypic behavior was observed for S. aureus and none of the phenotypic differences were correlated to sensitivity to HDPs.ConclusionStrains of L. monocytogenes and S. aureus were within each species equally sensitive to a range of HDPs despite variations in subtype, origin, and phenotypic behavior. Our results suggest that therapeutic use of HDPs will not be hampered by occurrence of naturally tolerant strains of the two species investigated in the present study.
The humoral immune response to Chlamydia outer membrane protein 2 (Omp2) was studied. Omp2 is a highly genus-conserved structural protein of all Chlamydia species, containing a variable N-terminal fragment. To analyze where the immunogenic parts were localized, seven highly purified truncated fusion proteins constituting different regions of the protein were produced (Chlamydia pneumoniae-Omp2aa23-aa93,Chlamydia psittaci-Omp2aa23-aa94, andChlamydia trachomatis-Omp2aa23-aa84, aa87-aa547, aa23-aa182, aa167-aa434, aa420-aa547). By an enzyme-linked immunosorbent assay with serologically defined patient sera, Omp2 was found to be a major immunogen of both C. pneumoniae andC. trachomatis infections (P ≪ 0.0001). The humoral immune responses were not confined to any particular region of the Omp2 protein, and no species-specific anti-Omp2 immunoglobulins were detected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.