Behavioral reactions of harbor porpoises (Phocoena phocoena) to underwater noise from pile driving were studied. Steel monopile foundations (4 m diameter) for offshore wind turbines were driven into hard sand in shallow water at Horns Reef, the North Sea. The impulsive sounds generated had high sound pressures [source level 235 dB re 1 microPa(pp) at 1 m, transmission loss 18 log(distance)] with a strong low frequency emphasis but with significant energy up to 100 kHz. Reactions of porpoises were studied by passive acoustic loggers (T-PODs). Intervals between echolocation events (encounters) were analyzed, and a significant increase was found from average 5.9 h between encounters in the construction period as a whole to on average 7.5 h between first and second encounters after pile driving. The size of the zone of responsiveness could not be inferred as no grading in response was observed with distance from the pile driving site but must have exceeded 21 km (distance to most distant T-POD station).
We investigate interactions between spatial nonlocal bright solitons in nematic liquid crystals using an analytical ͑"effective particle"͒ approach as well as direct numerical simulations. The model predicts attraction of out-of-phase solitons and the existence of their stable bound state. This nontrivial property is solely due to the nonlocal nature of the nonlinear response of the liquid crystals. We further predict and verify numerically the critical outwards angle and degree of nonlocality which determine the transition between attraction and repulsion of out-of-phase solitons.
We demonstrate that the inherent nonlinearity of a microstructured optical fiber (MOF) may be used to achieve label-free selective biosensing, thereby eliminating the need for post-processing of the fiber. This first nonlinear biosensor utilizes a change in the modulational instability (MI) gain spectrum (a shift of the Stokes- or anti-Stokes wavelength) caused by the selective capture of biomolecules by a sensor layer immobilised on the walls of the holes in the fiber. We find that such changes in the MI gain spectrum can be made detectable, and that engineering of the dispersion is important for optimizing the sensitivity. The nonlinear sensor shows a sensitivity of around 10.4 nm/nm, defined as the shift in resonance wavelength per nm biolayer, which is a factor of 7.5 higher than the hitherto only demonstrated label-free MOF biosensor.
We suggest and demonstrate a novel platform for the study of tunable nonlinear light propagation in two-dimensional discrete systems, based on photonic crystal fibers filled with high index nonlinear liquids. Using the infiltrated cladding region of a photonic crystal fiber as a nonlinear waveguide array, we experimentally demonstrate highly tunable beam diffraction and thermal self-defocusing, and realize a compact all-optical power limiter based on a tunable nonlinear response.
We demonstrate, both theoretically and experimentally, the existence of nonlocal gap solitons in two-dimensional periodic photonic structures with defocusing thermal nonlinearity. We employ liquid-infiltrated photonic crystal fibers and show how the system geometry can modify the effective response of a nonlocal medium and the properties of two-dimensional gap solitons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.