Relational keyword search (R-KwS) systems based on schema graphs take the keywords from the input query, find the tuples and tables where these keywords occur and look for ways to "connect" these keywords using information on referential integrity constraints, i.e., key/foreign key pairs. The result is a number of expressions, called Candidate Networks (CNs), which join relations where keywords occur in a meaningful way. These CNs are then evaluated, resulting in a number of join networks of tuples (JNTs) that are presented to the user as ranked answers to the query. As the number of CNs is potentially very high, handling them is very demanding, both in terms of time and resources, so that, for certain queries, current systems may take too long to produce answers, and for others they may even fail to return results (e.g., by exhausting memory). Moreover, the quality of the CN evaluation may be compromised when a large number of CNs is processed. Based on observations made by other researchers and in our own findings on representative workloads, we argue that, although the number of possible Candidate Networks can be very high, only very few of them produce answers relevant to the user and are indeed worth processing. Thus, R-KwS systems can greatly benefit from methods for accessing the relevance of Candidate Networks, so that only those deemed relevant might be evaluated. We propose in this paper an approach for ranking CNs, based on their probability of producing relevant answers to the user. This relevance is estimated based on the current state of the underlying database using a probabilistic Bayesian model we have developed. Experiments that we performed indicate that this model is able to assign the relevant CNs among the top-4 in the ranking produced.In these experiments we also observed that processing only a few relevant CNs has a considerable positive impact, not only on the performance of processing keyword queries, but also on the quality of the results obtained.978-1-4799-7964-6/15/$31.00
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.