Key developments of instrumentation, control and automation (ICA) applications in wastewater systems during the past 40 years are highlighted in this paper. From the first ICA conference in 1973 through to today there has been a tremendous increase in the understanding of the processes, instrumentation, computer systems and control theory. However, many developments have not been addressed here, such as sewer control, drinking water treatment and water distribution control. It is hoped that this review can stimulate new attempts to more effectively apply control and automation in water systems in the coming years.
As the largest single energy-consuming component in most biological wastewater treatment systems, control of aeration is of great interest seen from an energy savings point of view. This paper suggests a simple way of using on-line ammonium measurements to control aeration in a pre-denitrification plant by controlling the dissolved oxygen setpoint. The controller works primarily by feed-forward based on an ammonium sensor located at the head of the aerobic process part. Using online in-situ sensor measurements directly from the process have the important advantage over effluent measurements that there is no or very short time delay for information. The controller has been implemented in a full-scale wastewater treatment plant for a period of 35 days. During the experiment two identical activated sludge lines were used. The controller was implemented in one line, while the other line worked as a reference for comparison. The preliminary results indicate that the described control strategy leads to energy savings for the aeration in the region of 5-15%, while maintaining approximately the same effluent quality as in the reference line. Even higher energy savings can probably be achieved by optimising the controller. An automatic procedure for updating the controller parameters based on dynamic effluent ammonium measurement has been tested.
The control of the nitrate recirculation flow in a predenitrification system is addressed. An elementary mass balance analysis on the utilisation efficiency of the influent biodegradable COD (bCOD) for nitrate removal indicates that the control problem can be broken down into two parts: maintaining the "anoxic" zone anoxic (i.e. nitrate is present throughout the anoxic zone) and maximising the usage of influent soluble bCOD for denitrification. Simulation studies using the Simulation Benchmark developed in the European COST program show that both objectives can be achieved by maintaining the nitrate concentration at the outlet of the anoxic zone at around 2 mgN/L. This setpoint appears to be robust towards variations in the influent characteristics and sludge kinetics.
You have been entrusted with a very important and valuable asset of your community. The decisions that you make while managing will have to be lived with by water utility managers for the next 50-100 years. But they are not the only ones to enjoy your legacy. The economic and social developments of your community are also greatly influenced by your decisions for many years to come. And even if we don't talk a lot about it, the nature around us is also affected. Remembering back when you
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.