All Hedgehog (Hh) proteins are released from producing cells despite being synthesized as N- and C-terminally lipidated, membrane-tethered molecules. Thus, a cellular mechanism is needed for Hh solubilization. We previously suggested that a disintegrin and metalloprotease (ADAM)-mediated shedding of Sonic hedgehog (ShhNp) from its lipidated N and C termini results in protein solubilization. This finding, however, seemed at odds with the established role of N-terminal palmitoylation for ShhNp signaling activity. We now resolve this paradox by showing that N-palmitoylation of ShhNp N-terminal peptides is required for their proteolytic removal during solubilization. These peptides otherwise block ShhNp zinc coordination sites required for ShhNp binding to its receptor Patched (Ptc), explaining the essential yet indirect role of N-palmitoylation for ShhNp function. We suggest a functional model in which membrane-tethered multimeric ShhNp is at least partially autoinhibited in trans but is processed into fully active, soluble multimers upon palmitoylation-dependent cleavage of inhibitory N-terminal peptides.
Introduction Deubiquitinating-enzymes (DUBs) are key components of the ubiquitin-proteasome-system (UPS). The fundamental role of DUBs is specific removal of ubiquitin from substrates. DUBs contribute to activation/deactivation, recycling and localization of numerous regulatory-proteins, thus playing major roles in diverse cellular-processes. Altered DUB activity is associated with multitudes of pathologies including cancer. Therefore, DUBs represent novel candidates for target-directed drug development. Areas covered The article is a thorough review/accounting of patented compounds targeting DUBs stratifying/classifying the patented compounds based on: chemical-structures, nucleic-acid compositions, modes-of-action and targeting-sites. The review provides a brief background on the UPS and DUBs involvement. Furthermore, methods for assessing efficacy and potential pharmacological utility of DUB inhibitor (DUBi) are discussed. Expert opinion The FDA’s approval of the 20S proteasome inhibitors: bortezomib and carfilzomib for treatment of hematological malignancies established the UPS as an anti-cancer target. Unfortunately, many patients are inherently resistant or develop resistance to proteasome inhibitors (PIs). One potential strategy to combat PI resistance is targeting upstream components of the UPS such as DUBs. DUBs represent a promising potential therapeutic target due to their critical roles in various cellular processes including protein-turnover, localization and cellular homeostasis. While considerable efforts have been undertaken to develop DUB modulators, significant advancement is necessary move DUB inhibitors into the clinic.
The fly morphogen Hedgehog (Hh) and its mammalian orthologs, Sonic, Indian, and Desert hedgehog, are secreted signaling molecules that mediate tissue patterning during embryogenesis and function in tissue homeostasis and regeneration in the adult. The function of all Hh family members is regulated at the levels of morphogen multimerization on the surface of producing cells, multimer release, multimer diffusion to target cells, and signal reception. These mechanisms are all known to depend on interactions of positively charged Hh amino acids (the Cardin-Weintraub (CW) motif) with negatively charged heparan sulfate (HS) glycosaminoglycan chains. However, a precise mechanistic understanding of these interactions is still lacking. The proteins of the Hh family are powerful morphogens that control growth and patterning of developing embryos. Current models for Hh activity suggest that the morphogen disperses from a localized source and forms a gradient that patterns fields of responsive cells expressing the Hh receptor Patched (Ptc).Genetic evidence suggests that this process critically depends on heparan sulfate proteoglycan (HSPG) 2 expression. Upon secretion to the cell surface, Drosophila Hh forms nanoscale oligomers on the cell surface that co-localize with HSPGs (1). HS binds to the Cardin-Weintraub (CW) motif found on all known Hhs and regulates their function in flies (2, 3) and mice (4). In Drosophila (5) as well as in mammalian cell culture (6, 7), Hhs are always released from producing cells in multimeric form, as demonstrated by gel filtration analysis of the soluble morphogen. Release of the multimeric morphogen (the processed Hh N-terminal signaling domain, designated HhNp) from the cell surface depends on the expression of Dispatched (8) and A disintegrin and metalloprotease (ADAM) family members that mediate ectodomain shedding from transfected Bosc23 cells (9). HS is involved in the formation of the HhNp extracellular gradient, which, in the fly, depends on the expression of the Drosophila Exostosin (Ext) family of proteins, encoded by the genes tout velu (ttv), brother of tout velu, and sister of tout velu and the glycosylphosphatidylinositollinked HSPGs Dally and Dally-like, corresponding to vertebrate glypicans (2, 3, 10). HS expression and Dally-like/glypican expression are also essential for signal reception and modulation on Ptc-expressing receiving cells (10 -14) and participate in HhNp-Ihog interaction (15). However, the essential role of direct morphogen-HSPG interactions in embryonic patterning was recently challenged (16). In that report, transgenic mice made deficient in two ShhNp CW amino acid residues implicated in HS binding (17) lacked an Shh-related phenotype, suggesting that direct morphogen-HS interactions were not essential for normal development. However, in that report as well as in others (16 -18), CW-dependent HS interactions were characterized using a recombinant, non-physiological monomeric morphogen termed ShhN, whereas embryogenesis depends entirely on the activity of morp...
Interleukin 1 beta (IL-1β) is a pro-inflammatory cytokine that plays a major role in inflammatory diseases as well as cancer. The inflammatory response after Toll-like receptor (TLR) 4 activation is tightly regulated through phosphorylation of MAP kinases, including p38 and JNK pathways. The activation of MAP kinases is negatively regulated by MAPK phosphatases (MKPs). MKP-1 preferentially dephosphorylates p38 and JNK. IL-1β is regulated through the activation of MAPK, including p38 as well as several transcription factors. The oxygen-sensitive transcription factor HIF-1α is a known transcription factor for several inflammatory cytokines including IL-1β and IL-6. Here, we report that MKP-1 regulates HIF-1α expression in response to LPS. MKP-1 deficient bone marrow derived macrophages (BMDMs) exhibited increased reactive oxygen species (ROS) production and higher HIF-1α expression. In contrast, the expression of all three isoforms of prolyl hydroxylases (PHDs), which are important in destabilizing HIF-1α through hydroxylation, were significantly decreased in MKP-1 deficient BMDMs. LPS challenge of MKP-1 deficient BMDMs led to a substantial increase in IL-1β production. An inhibitor of HIF-1α significantly decreased LPS mediated IL-1β production both at the transcript and protein levels. Similarly, inhibition of p38 MAP kinase reduced LPS mediated pro-IL-1β and HIF-1α protein levels as well as ROS production in MKP-1 deficient BMDMs. These findings demonstrate a regulatory function for MKP-1 in modulating IL-1β expression through p38 activation, ROS production and HIF-1α expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.