A cross-layer packet scheduling scheme that streams pre-encoded video over wireless downlink packet access networks to multiple users is presented. The scheme can be used with the emerging wireless standards such as HSDPA and IEEE 802.16. A gradient based scheduling scheme is used in which user data rates are dynamically adjusted based on channel quality as well as the gradients of a utility function. The user utilities are designed as a function of the distortion of the received video. This enables distortion-aware packet scheduling both within and across multiple users. The utility takes into account decoder error concealment, an important component in deciding the received quality of the video. We consider both simple and complex error concealment techniques. Simulation results show that the gradient based scheduling framework combined with This work was supported by the Motorola Center for Seamless Communication at Northwestern University. The authors are with the Electrical Engineering and Computer Science Department at Northwestern University. the content-aware utility functions provides a viable method for downlink packet scheduling as it can significantly outperform current content-independent techniques. Further tests determine the sensitivity of the system to the initial video encoding schemes, as well as to non-real-time packet ordering techniques.
The emergence of 3G and 4G wireless networks brings with it the possibility of streaming high quality video content on-demand to mobile users. Wireless video applications require appropriate scheduling techniques that make use of the specific characteristics of video content, as well as the well known gains from multiuser diversity. While fast and frequent channel feedback is available in the new generation of wireless networks, the channel estimates cannot be perfect, and channel losses should be taken into account in the packet scheduling and resource allocation. The proposed scheme is formulated as a joint optimization over the resource allocation and channel loss protection, in order to minimize the distortion of the received video sequences. The distortion is a function of the packets deliberately dropped at the transmission queue due to congestion, as well as of random channel losses. The scheme makes use of a packet prioritization strategy that orders video packets based on their contribution to reducing the expected distortion of the received video sequence. Simulation results show that the proposed technique significantly outperforms content-independent packet scheduling schemes.
Abstract-This paper presents an improved technique for estimating the end-to-end distortion, which includes both quantization error after encoding and random transmission error, after transmission in video communication systems. The proposed technique mainly differs from most existing techniques in that it takes into account filtering operations, e.g. interpolation in subpixel motion compensation, as introduced in advanced video codecs. The distortion estimation for pixels or subpixels under filtering operations requires the computation of the second moment of a weighted sum of random variables. In this paper, we prove a proposition for calculating the second moment of a weighted sum of correlated random variables without requiring knowledge of their probability distribution. Then, we apply the proposition to extend our previous error-resilient algorithm for prediction mode decision without significantly increasing complexity. Experimental results using an H.264/AVC codec show that our new algorithm provides an improvement in both rate-distortion performance and subjective quality over existing algorithms. Our algorithm can also be applied in the upcoming high efficiency video coding (HEVC) standard, where additional filtering techniques are under consideration.
Demand for multimedia services, such as video streaming over wireless networks, has grown dramatically in recent years. The downlink transmission of multiple video sequences to multiple users over a shared resource-limited wireless channel, however, is a daunting task. Among the many challenges in this area are the time-varying channel conditions, limited available resources, such as bandwidth and power, and the different transmission requirements of different video content. This work takes into account the time-varying nature of the wireless channels, as well as the importance of individual video packets, to develop a cross-layer resource allocation and packet scheduling scheme for multiuser video streaming over lossy wireless packet access networks. Assuming that accurate channel feedback is not available at the scheduler, random channel losses combined with complex error concealment at the receiver make it impossible for the scheduler to determine the actual distortion of the sequence at the receiver. Therefore, the objective of the optimization is to minimize the expected distortion of the received sequence, where the expectation is calculated at the scheduler with respect to the packet loss probability in the channel. The expected distortion is used to order the packets in the transmission queue of each user, and then gradients of the expected distortion are used to efficiently allocate resources across users. Simulations show that the proposed scheme performs significantly better than a conventional content-independent scheme for video transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.