Folate is a B vitamin, deficiency of which appears to increase the risk of developing several malignancies including colorectal cancer. In contrast to the cancer-promoting effect of folate deficiency in normal tissues, several lines of evidence indicate that folate depletion suppresses the progression of existing neoplasms and enhance the sensitivity of cancer cells to chemotherapy. Folate mediates the transfer of one-carbon necessary for the de novo biosynthesis of purines and thymidylate, and hence is an essential factor for DNA synthesis and repair, and the maintenance of DNA integrity and stability. Folate deficiency induces DNA strand breaks, increases uracil misincorporation into DNA, impairs DNA repair and appears to induce apoptosis. Although the effects of folate depletion on DNA integrity and apoptosis and on subsequent cancer development, progression and treatment in colonic epithelial cells have been well characterized, it is largely unknown at present how folate depletion modulates specific upstream genes in apoptosis and cancer pathways that regulate these processes. We therefore investigated the effects of folate depletion on expression of genes involved in apoptosis and cancer pathways in four human colon adenocarcinoma cell lines in an in vitro model of folate deficiency. Apoptosis and cancer pathway-specific mini-microarray were used to screen for differentially expressed genes in response to folate deficiency, and the expression of seven most notably and consistently affected genes was confirmed by real time RT-PCR. Our data suggest that folate deficiency affects the expression of key genes that are related to cell cycle control, DNA repair, apoptosis and angiogenesis in a cell-specific manner. Cell-specificity in gene expression changes in response to folate deficiency is likely due to significant differences in molecular and phenotypic characteristics, growth rates and intracellular folate concentrations among the four cell lines.
The first optic nerve elements are seen at the 13-14 mm stage in the form of dendriform fibrils emerging from the retinal ganglion cells proceeding towards the primitive epithelial papilla, the forerunner of the neuroectodermal optic disc. ' The fibres fill the optic stalk as they travel towards the future chiasm. Mesodermal elements give rise to the vascular and septal system of the optic nerve and its dural sheath.
Background: Folylpoly-c-glutamate synthetase (FPGS) converts intracellular folates and antifolates (for example, methotrexate (MTX)) to polyglutamates. Polyglutamylated folates and antifolates are retained in cells longer and are better substrates than their monoglutamate counterparts for enzymes involved in one carbon transfer. Polyglutamylation of intracellular 5,10-methylenetetrahydrofolate may also enhance the cytotoxicity of 5-fluorouracil (5-FU) by allowing more efficient formation and stabilisation of the inhibitory ternary complex involving thymidylate synthase and a 5-FU metabolite. Aim: We investigated the effects of FPGS modulation on the chemosensitivity of colon cancer cells to 5-FU and MTX. Methods: Human HCT116 colon cancer cells were stably transfected with the sense or antisense FPGS cDNA or blank (control). FPGS protein expression and enzyme activity, growth rate, intracellular folate content and composition, and in vitro chemosensitivity to 5-FU and MTX were determined. Results: Compared with cells expressing endogenous FPGS, those overexpressing FPGS had significantly faster growth rates and higher concentrations of total folate and long chain folate polyglutamates while antisense FPGS inhibition produced opposite results. FPGS overexpression significantly enhanced, whereas FPGS inhibition decreased, chemosensitivity to 5-FU. No significant difference in chemosensitivity to MTX was observed. Conclusions: These data provide functional evidence that FPGS overexpression and inhibition modulate chemosensitivity of colon cancer cells to 5-FU by altering intracellular folate polyglutamylation, providing proof of principle. Thus FPGS status may be an important predictor of chemosensitivity of colon cancer cells to 5-FU based chemotherapy, and FPGS gene transfer may increase the sensitivity of colon cancer cells to 5-FU-based chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.