We present experimental results on the role of flexibility and aspect ratio in bio-inspired aquatic propulsion. Direct thrust and power measurements are used to determine the propulsive efficiency of flexible panels undergoing a leading-edge pitching motion. We find that flexible panels can give a significant amplification of thrust production of $\mathscr{O}(100{\unicode{x2013}} 200\hspace{0.167em} \% )$ and propulsive efficiency of $\mathscr{O}(100\hspace{0.167em} \% )$ when compared to rigid panels. The data highlight that the global maximum in propulsive efficiency across a range of panel flexibilities is achieved when two conditions are simultaneously satisfied: (i) the oscillation of the panel yields a Strouhal number in the optimal range ($0. 25\lt \mathit{St}\lt 0. 35$) predicted by Triantafyllou, Triantafyllou & Grosenbaugh (J. Fluid Struct., vol. 7, 1993, pp. 205–224); and (ii) this frequency of motion is tuned to the structural resonant frequency of the panel. In addition, new scaling laws for the thrust production and power input to the fluid are derived for the rigid and flexible panels. It is found that the dominant forces are the characteristic elastic force and the characteristic fluid force. In the flexible regime the data scale using the characteristic elastic force and in the rigid limit the data scale using the characteristic fluid force.
Experimental and computational results are presented on an aerofoil undergoing pitch oscillations in ground effect, that is, close to a solid boundary. The time-averaged thrust is found to increase monotonically as the mean position of the aerofoil approaches the boundary while the propulsive efficiency stays relatively constant, showing that ground effect can enhance thrust at little extra cost for a pitching aerofoil. Vortices shed into the wake form pairs rather than vortex streets, so that in the mean a momentum jet is formed that angles away from the boundary. The time-averaged lift production is found to have two distinct regimes. When the pitching aerofoil is between 0.4 and 1 chord lengths from the ground, the lift force pulls the aerofoil towards the ground. In contrast, for wall proximities between 0.25 and 0.4 chord lengths, the lift force pushes the aerofoil away from the ground. Between these two regimes there is a stable equilibrium point where the time-averaged lift is zero and thrust is enhanced by approximately 40 %.
Experiments are reported on the behavior of two hydrofoils arranged in an in-line configuration as they undergo prescribed pitching motions over a wide range of phase lags and spacings between the foils. It is found that the thrust production and propulsive efficiency of the upstream foil differed from that of an isolated one only for relatively closely spaced foils, and the effects attenuated rapidly with increasing spacing. In contrast, the performance of the downstream foil depends strongly on the streamwise spacing and phase differential between the foils for all cases considered, and the thrust and propulsive efficiency could be as high as 1.5 times or as low as 0.5 times those of an isolated foil. Particle image velocimetry reveals how the wake interactions lead to these variations in propulsive performance, where a coherent mode corresponds to enhanced performance, and a branched mode corresponds to diminished performance. C 2014 AIP Publishing LLC. [http://dx.
Experimental and analytical results are presented on two identical bio-inspired hydrofoils oscillating in a side-by-side configuration. The time-averaged thrust production and power input to the fluid are found to depend on both the oscillation phase differential and the transverse spacing between the foils. For in-phase oscillations, the foils exhibit an enhanced propulsive efficiency at the cost of a reduction in thrust. For out-of-phase oscillations, the foils exhibit enhanced thrust with no observable change in the propulsive efficiency. For oscillations at intermediate phase differentials, one of the foils experiences a thrust and efficiency enhancement while the other experiences a reduction in thrust and efficiency. Flow visualizations reveal how the wake interactions lead to the variations in propulsive performance. Vortices shed into the wake from the tandem foils form vortex pairs rather than vortex streets. For in-phase oscillation, the vortex pairs induce a momentum jet that angles towards the centerplane between the foils, while out-of-phase oscillations produce vortex pairs that angle away from the centerplane between the foils.
A mechanical representation of batoid-like propulsion using a flexible fin with an elliptical planform shape is used to study the hydrodynamics of undulatory propulsion. The wake is found to consist of a series of interconnected vortex rings, whereby leading and trailing edge vortices of subsequent cycles become entangled with one another. Efficient propulsion is achieved when leading and trailing edge vortices coalesce at the spanwise location where most of the streamwise fluid momentum is concentrated in the wake of the fin. Both the Strouhal number and the wavelength are found to have a significant effect on the wake structure. In general, a decrease in wavelength promotes a wake transition from shedding a single vortex per half-oscillation period to shedding a pair of vortices per half-oscillation period. An increase in Strouhal number causes the wake to bifurcate a finite distance downstream of the trailing edge of the fin into a pair of jets oriented at an acute angle to the line of symmetry. The bifurcation distance decreases with increasing Strouhal number and wavelength, and it is shown to obey a simple scaling law.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.