A recursive enumerator for a function h is an algorithm f which enumerates for an input x finitely many elements including h(x). f is a k(n)-enumerator if for every input x of length n. h(x) is among the first k(n) elements enumerated by f. If there is a k(n)-enumerator for h then h is called k(n)-enumerable. We also consider enumerators which are only A-recursive for some oracle A.
A recursively enumerable splitting of an r.e. set A is a pair of r.e. sets B and C such that A = B ∪ C and B ∩ C = ⊘. Since for such a splitting deg A = deg B ∪ deg C, r.e. splittings proved to be a quite useful notion for investigations into the structure of the r.e. degrees. Important splitting theorems, like Sacks splitting [S1], Robinson splitting [R1] and Lachlan splitting [L3], use r.e. splittings.Since each r.e. splitting of a set induces a splitting of its degree, it is natural to study the relation between the degrees of r.e. splittings and the degree splittings of a set. We say a set A has the strong universal splitting property (SUSP) if each splitting of its degree is represented by an r.e. splitting of itself, i.e., if for deg A = b ∪ c there is an r.e. splitting B, C of A such that deg B = b and deg C = c. The goal of this paper is the study of this splitting property.In the literature some weaker splitting properties have been studied as well as splitting properties which imply failure of the SUSP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.