This note is intended to serve primarily as a reference guide to users wishing to make use of the Tropical Rainfall Measuring Mission data. It covers each of the three primary rainfall instruments: the passive microwave radiometer, the precipitation radar, and the Visible and Infrared Radiometer System on board the spacecraft. Radiometric characteristics, scanning geometry, calibration procedures, and data products are described for each of these three sensors.
The infectivity profile of an individual with COVID-19 is attributed to the paper Temporal dynamics in viral shedding and transmissibility of COVID-19 by He et al., published in Nature Medicinein April 2020. However, the analysis within this paper contains a mistake such that the published infectivity profile is incorrect and the conclusion that infectiousness begins 2.3 days before symptom onset is no longer supported. In this document we discuss the error and compute the correct infectivity profile. We also establish confidence intervals on this profile, quantify the difference between the published and the corrected profiles, and discuss an issue of normalisation when fitting serial interval data. This infectivity profile plays a central role in policy and decision making, thus it is crucial that this issue is corrected with the utmost urgency to prevent the propagation of this error into further studies and policies. We hope that this preprint will reach all researchers and policy makers who are using the incorrect infectivity profile to inform their work.
The environment in which a population evolves can have a crucial impact on selection. We study evolutionary dynamics in finite populations of fixed size in a changing environment. The population dynamics are driven by birth and death events. The rates of these events may vary in time depending on the state of the environment, which follows an independent Markov process. We develop a general theory for the fixation probability of a mutant in a population of wild-types, and for mean unconditional and conditional fixation times. We apply our theory to evolutionary games for which the payoff structure varies in time. The mutant can exploit the environmental noise; a dynamic environment that switches between two states can lead to a probability of fixation that is higher than in any of the individual environmental states. We provide an intuitive interpretation of this surprising effect. We also investigate stationary distributions when mutations are present in the dynamics. In this regime, we find two approximations of the stationary measure. One works well for rapid switching, the other for slowly fluctuating environments.
The timing of transmission plays a key role in the dynamics and controllability of an epidemic. However, observing generation times—the time interval between the infection of an infector and an infectee in a transmission pair—requires data on infection times, which are generally unknown. The timing of symptom onset is more easily observed; generation times are therefore often estimated based on serial intervals—the time interval between symptom onset of an infector and an infectee. This estimation follows one of two approaches: (i) approximating the generation time distribution by the serial interval distribution or (ii) deriving the generation time distribution from the serial interval and incubation period—the time interval between infection and symptom onset in a single individual—distributions. These two approaches make different—and not always explicitly stated—assumptions about the relationship between infectiousness and symptoms, resulting in different generation time distributions with the same mean but unequal variances. Here, we clarify the assumptions that each approach makes and show that neither set of assumptions is plausible for most pathogens. However, the variances of the generation time distribution derived under each assumption can reasonably be considered as upper (approximation with serial interval) and lower (derivation from serial interval) bounds. Thus, we suggest a pragmatic solution is to use both approaches and treat these as edge cases in downstream analysis. We discuss the impact of the variance of the generation time distribution on the controllability of an epidemic through strategies based on contact tracing, and we show that underestimating this variance is likely to overestimate controllability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.