In this survey we consider the impact of turbulence on cloud formation from the cloud scale to the droplet scale. We assess progress in understanding the effect of turbulence on the condensational and collisional growth of droplets and the effect of entrainment and mixing on the droplet spectrum. The increasing power of computers and better experimental and observational techniques allow for a much more detailed study of these processes than was hitherto possible. However, much of the research necessarily remains idealized and we argue that it is those studies which include such fundamental characteristics of clouds as droplet sedimentation and latent heating that are most relevant to clouds. Nevertheless, the large body of research over the last decade is beginning to allow tentative conclusions to be made. For example, it is unlikely that small-scale turbulent eddies (i.e. not the energy-containing eddies) alone are responsible for broadening the droplet size spectrum during the initial stage of droplet growth due to condensation. It is likely, though, that small-scale turbulence plays a significant role in the growth of droplets through collisions and coalescence. Moreover, it has been possible through detailed numerical simulations to assess the relative importance of different processes to the turbulent collision kernel and how this varies in the parameter space that is important to clouds. The focus of research on the role of turbulence in condensational and collisional growth has tended to ignore the effect of entrainment and mixing and it is arguable that they play at least as important a role in the evolution of the droplet spectrum. We consider the role of turbulence in the mixing of dry and cloudy air, methods of quantifying this mixing and the effect that it has on the droplet spectrum. Copyright
We present numerical simulations of stably stratified, vortically forced turbulence at a wide range of Froude numbers. Large-scale vortical forcing was chosen to represent geophysical vortices which break down at small scales where Coriolis effects are weak. The resulting vortical energy spectra are much steeper in the horizontal direction and shallower in the vertical than typical observations in the atmosphere and ocean, as noted in previous studies. We interpret these spectra in terms of the vertical decoupling which emerges in the strongly stratified limit. We show that this decoupling breaks down at a vertical scale of $U/N$, where $N$ is the Brunt–Väisälä frequency and $U$ is a characteristic horizontal velocity, confirming previous scaling arguments. The transfer of vortical energy to wave energy is most efficient at this vertical scale; vertical spectra of wave energy are correspondingly peaked at small scales, as observed in past work. The equilibrium statistical mechanics of the inviscid unforced truncated problem qualitatively predicts the nature of the forced–dissipative solutions, and confirms the lack of an inverse cascade of vortical energy.
Numerical simulations investigating the formation and stability of quasi-two-dimensional coherent vortices in rotating homogeneous three-dimensional flow are described. In a numerical study of shear flows Lesieur, Yanase & Métais (1991) found that cyclones (respectively anticyclones) with |ω2D| ∼ O(2Ω), where ω2D is the vorticity and Ω is the rotation rate, are stabilized (respectively destabilized) by the rotation. A study of triply periodic pseudo-spectral simulations (643) was undertaken in order to investigate the vorticity asymmetry in homogeneous turbulence. Specifically, we examine (i) the possible three-dimensionalization of initially two-dimensional vortices and (ii) the emergence of quasi-two-dimensional structures in initially-isotropic three-dimensional turbulence. Direct numerical simulations of the Navier—Stokes equations are compared with large-eddy simulations employing a subgridscale model based on the second-order velocity structure function evaluated at the grid separation and with simulations employing hyperviscosity.Isolated coherent two-dimensional vortices, obtained from a two-dimensional decay simulation, were superposed with a low-amplitude three-dimensional perturbation, and used to initialize the first set of simulations. With Ω = 0, a three-dimensionalization of all vortices was observed. This occurred first in the small scales in conjunction with the formation of longitudinal hairpin vortices with vorticity perpendicular to that of the initial quasi-two-dimensional flow. In agreement with centrifugal stability arguments, when 2Ω = [ω2D]rms a rapid destabilization of anticyclones was observed to occur, whereas the initial two-dimensional cyclonic vortices persisted throughout the simulation. At larger Ω, both cyclones and anticyclones remained two-dimensional, consistent with the Taylor—Proudman theorem. A second set of simulations starting from isotropic three-dimensional fields was initialized by allowing a random velocity field to evolve (Ω = 0) until maximum energy dissipation. When the simulations were continued with 2Ω = [ω · Ω]rms/Ω, the three-dimensional flow was observed to organize into two-dimensional cyclonic vortices. At larger Ω, two-dimensional anticyclones also emerged from the initially-isotropic flow. The consequences for a variety of industrial and geophysical applications are clear. For quasi-two-dimensional eddies whose characteristic circulation times are of the order ofder of Ω−1, rotation induces a complete disruption of anticyclonic vortices, while stabilizing cyclonic ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.