The glycocalyx is a carbohydrate-rich layer that lines the luminal side of the vascular endothelium. Its soluble components exist in a dynamic equilibrium with the bloodstream and play an important role in maintaining endothelial layer integrity. However, the glycocalyx can be easily damaged and is extremely vulnerable to insults from a variety of sources, including inflammation, trauma, haemorrhagic shock, hypovolemia and ischaemia-reperfusion. Damage to the glycocalyx commonly precedes further damage to the vascular endothelium. Preclinical research has identified a number of different factors capable of protecting or regenerating the glycocalyx. Initial investigations suggest that plasma may convey protective and regenerative effects. However, it remains unclear which exact components or properties of plasma are responsible for this protective effect. Studies have reported protective effects for several plasma proteins individually, including antithrombin, orosomucoid and albumin; the latter of which may be of particular interest, due to the high levels of albumin present in plasma. A further possibility is that plasma is simply a better intravascular volume expander than other resuscitation fluids. It has also been proposed that the protective effects are mediated indirectly via plasma resuscitation-induced changes in gene expression. Further work is needed to determine the importance of specific plasma proteins or other factors for glycocalyx protection, particularly in a clinical setting.
Neutrophils are crucial mediators of host defense that are recruited to the central nervous system (CNS) in large numbers during acute bacterial meningitis caused by
Streptococcus pneumoniae
. Neutrophils release neutrophil extracellular traps (NETs) during infections to trap and kill bacteria. Intact NETs are fibrous structures composed of decondensed DNA and neutrophil-derived antimicrobial proteins. Here we show NETs in the cerebrospinal fluid (CSF) of patients with pneumococcal meningitis, and their absence in other forms of meningitis with neutrophil influx into the CSF caused by viruses,
Borrelia
and subarachnoid hemorrhage. In a rat model of meningitis, a clinical strain of pneumococci induced NET formation in the CSF. Disrupting NETs using DNase I significantly reduces bacterial load, demonstrating that NETs contribute to pneumococcal meningitis pathogenesis in vivo. We conclude that NETs in the CNS reduce bacterial clearance and degrading NETs using DNase I may have significant therapeutic implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.