The conversion of palmitic and oleic acid as well as tall oil fatty acid was investigated in a fully continuous small scale fluid catalytic cracking (FCC) pilot plant. A conventional FCC zeolite catalyst was used. Experiments were performed in the range of 485-550°C. The highest gasoline yield of 44 wt.% was obtained from oleic acid at 550°C. Palmitic acid yielded the most cracking gas at 550°C with 43.9 wt.%. The obtained gasoline was practically oxygen-free at high octane numbers. Oxygen contained in the feed was mainly converted to water and small amounts of CO 2 . Gasoline aromaticity clearly increased with temperature. The formation of high boiling products was enhanced by the number of C=C double bonds in the fatty acids. Large amounts of propene and ethene were formed which are valuable reactants for the polymer industry. The lower price of fatty acids in comparison with fresh vegetable oils makes them an interesting feedstock for the FCC process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.