Campylobacter infections have been reported at prevalences ranging from 2 to 50% in a range of wild bird species, although there have been few studies that have investigated the molecular epidemiology of Campylobacter spp. Consequently, whether wild birds are a source of infection in humans or domestic livestock or are mainly recipients of domestic animal strains and whether separate cycles of infection occur remain unknown. To address these questions, serial cross-sectional surveys of wild bird populations in northern England were carried out over a 2-year period. Fecal samples were collected from 2,084 wild bird individuals and screened for the presence of Campylobacter spp. A total of 56 isolates were recovered from 29 birds sampled at 15 of 167 diverse locales. Campylobacter jejuni, Campylobacter lari, and Campylobacter coli were detected by PCR, and the prevalences of different Campylobacter spp. in different avian families ranged from 0% to 33%. Characterization of 36 C. jejuni isolates by multilocus sequence typing revealed that wild birds carry both livestock-associated and unique strains of C. jejuni. However, the apparent absence of unique wild bird strains of C. jejuni in livestock suggests that the direction of infection is predominantly from livestock to wild birds. C. lari was detected mainly in wild birds sampled in an estuarine or coastal habitat. Fifteen C. lari isolates were analyzed by macrorestriction pulsed-field gel electrophoresis, which revealed genetically diverse populations of C. lari in Eurasian oystercatchers (Haematopus ostralegus) and clonal populations in magpies (Pica pica).
Many migratory species are in decline across their geographical ranges. Single‐population studies can provide important insights into drivers at a local scale, but effective conservation requires multi‐population perspectives. This is challenging because relevant data are often hard to consolidate, and state‐of‐the‐art analytical tools are typically tailored to specific datasets. We capitalized on a recent data harmonization initiative (SPI‐Birds) and linked it to a generalized modelling framework to identify the demographic and environmental drivers of large‐scale population decline in migratory pied flycatchers (Ficedula hypoleuca) breeding across Britain. We implemented a generalized integrated population model (IPM) to estimate age‐specific vital rates, including their dependency on environmental conditions, and total and breeding population size of pied flycatchers using long‐term (34–64 years) monitoring data from seven locations representative of the British breeding range. We then quantified the relative contributions of different vital rates and population structure to changes in short‐ and long‐term population growth rate using transient life table response experiments (LTREs). Substantial covariation in population sizes across breeding locations suggested that change was the result of large‐scale drivers. This was supported by LTRE analyses, which attributed past changes in short‐term population growth rates and long‐term population trends primarily to variation in annual survival and dispersal dynamics, which largely act during migration and/or nonbreeding season. Contributions of variation in local reproductive parameters were small in comparison, despite sensitivity to local temperature and rainfall within the breeding period. We show that both short‐ and long‐term population changes of British breeding pied flycatchers are likely linked to factors acting during migration and in nonbreeding areas, where future research should be prioritized. We illustrate the potential of multi‐population analyses for informing management at (inter)national scales and highlight the importance of data standardization, generalized and accessible analytical tools, and reproducible workflows to achieve them.
SALOME ASSUMBO MAMPB 0 a d BBHAVIOUR 41 43 22 24 Finger and thumb sucking become pronounced 51 45 66 Lifting body with hands on horizontal bar 52 54 46 Interest shown in rattle 57 76 85 Crawling, using elbows and heels 67 77 69 Pulling self around playpen or cot using sides or bars 81 93 94 Standing upright with human support 94 I20 98 Climbing using hands and feet 95 I22 128 Biting when tired or annoyed; threat cough used Sucking muscles start to develop; begins to pay attention to surroundings when fed 52 70 78 crawling, using arms only I18 124 93
Many migratory species are in decline across their geographical ranges. Single-population studies can provide important insights into drivers at a local scale, but effective conservation requires multi-population perspectives. This is challenging because relevant data are often hard to consolidate, and state-of-the-art analytical tools are typically tailored to specific datasets. We capitalized on a recent data harmonization initiative (SPI-Birds) and linked it to a generalized modeling framework to identify the demographic and environmental drivers of large-scale population decline in migratory pied flycatchers (Ficedula hypoleuca) breeding across Britain.We implemented a generalized integrated population model (IPM) to estimate age-specific vital rates, including their dependency on environmental conditions, and total and breeding population size of pied flycatchers using long-term (34-64 years) monitoring data from seven locations representative of the British breeding range. We then quantified the relative contributions of different vital rates and population structure to changes in short- and long-term population growth rate using transient life table response experiments (LTREs). Substantial covariation in population sizes across breeding locations suggested that change was the result of large-scale drivers. This was supported by LTRE analyses, which attributed past changes in short-term population growth rates and long-term population trends primarily to variation in annual survival and dispersal dynamics, which largely act during migration and/or non-breeding season. Contributions of variation in local reproductive parameters were small in comparison, despite sensitivity to local temperature and rainfall within the breeding period. We show that both short- and longer-term population changes of British-breeding pied flycatchers are likely linked to factors acting during migration and in non-breeding areas, where future research should be prioritized. We illustrate the potential of multi-population analyses for informing management at (inter)national scales and highlight the importance of data standardization, generalized and accessible analytical tools, and reproducible workflows to achieve them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.